Chapter 6: Problem 70
Somebody claims to have developed a new reversible heat-engine cycle that has a higher theoretical efficiency than the Carnot cycle operating between the same temperature limits. How do you evaluate this claim?
Chapter 6: Problem 70
Somebody claims to have developed a new reversible heat-engine cycle that has a higher theoretical efficiency than the Carnot cycle operating between the same temperature limits. How do you evaluate this claim?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe \(\mathrm{COP}\) of a refrigerator decreases as the temperature of the refrigerated space is decreased. That is, removing heat from a medium at a very low temperature will require a large work input. Determine the minimum work input required to remove \(1 \mathrm{kJ}\) of heat from liquid helium at \(3 \mathrm{K}\) when the outside temperature is 300 K.
A heat pump supplies heat energy to a house at the rate of \(140,000 \mathrm{kJ} / \mathrm{h}\) when the house is maintained at \(25^{\circ} \mathrm{C} .\) Over a period of one month, the heat pump operates for 100 hours to transfer energy from a heat source outside the house to inside the house. Consider a heat pump receiving heat from two different outside energy sources. In one application the heat pump receives heat from the outside air at \(0^{\circ} \mathrm{C} .\) In a second application the heat pump receives heat from a lake having a water temperature of \(10^{\circ} \mathrm{C}\). If electricity costs \(\$ 0.105 / \mathrm{kWh}\), determine the maximum money saved by using the lake water rather than the outside air as the outside energy source.
The cargo space of a refrigerated truck whose inner dimensions are \(12 \mathrm{m} \times 2.3 \mathrm{m} \times 3.5 \mathrm{m}\) is to be precooled from \(25^{\circ} \mathrm{C}\) to an average temperature of \(5^{\circ} \mathrm{C}\). The construction of the truck is such that a transmission heat gain occurs at a rate of \(120 \mathrm{W} /^{\circ} \mathrm{C}\). If the ambient temperature is \(25^{\circ} \mathrm{C}\) determine how long it will take for a system with a refrigeration capacity of \(11 \mathrm{kW}\) to precool this truck.
A heat engine is operating on a Carnot cycle and has a thermal efficiency of 55 percent. The waste heat from this engine is rejected to a nearby lake at \(60^{\circ} \mathrm{F}\) at a rate of \(800 \mathrm{Btu} / \mathrm{min} .\) Determine \((a)\) the power output of the engine and \((b)\) the temperature of the source.
A typical new household refrigerator consumes about \(680 \mathrm{kWh}\) of electricity per year and has a coefficient of performance of \(1.4 .\) The amount of heat removed by this refrigerator from the refrigerated space per year is \((a) 952 \mathrm{MJ} / \mathrm{yr}\) (b) 1749 MJ/yr \((c) 2448\) MJ/yr \((d) 3427 \mathrm{MJ} / \mathrm{yr}\) \((e) 4048 \mathrm{MJ} / \mathrm{yr}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.