Chapter 6: Problem 63
Why does a nonquasi-equilibrium expansion process deliver less work than the corresponding quasi-equilibrium one?
Chapter 6: Problem 63
Why does a nonquasi-equilibrium expansion process deliver less work than the corresponding quasi-equilibrium one?
All the tools & learning materials you need for study success - in one app.
Get started for freeA heat pump supplies heat energy to a house at the rate of \(140,000 \mathrm{kJ} / \mathrm{h}\) when the house is maintained at \(25^{\circ} \mathrm{C} .\) Over a period of one month, the heat pump operates for 100 hours to transfer energy from a heat source outside the house to inside the house. Consider a heat pump receiving heat from two different outside energy sources. In one application the heat pump receives heat from the outside air at \(0^{\circ} \mathrm{C} .\) In a second application the heat pump receives heat from a lake having a water temperature of \(10^{\circ} \mathrm{C}\). If electricity costs \(\$ 0.105 / \mathrm{kWh}\), determine the maximum money saved by using the lake water rather than the outside air as the outside energy source.
A heat engine operates between two reservoirs at 800 and \(20^{\circ} \mathrm{C} .\) One-half of the work output of the heat engine is used to drive a Carnot heat pump that removes heat from the cold surroundings at \(2^{\circ} \mathrm{C}\) and transfers it to a house maintained at \(22^{\circ} \mathrm{C}\). If the house is losing heat at a rate of \(62,000 \mathrm{kJ} / \mathrm{h}\) determine the minimum rate of heat supply to the heat engine required to keep the house at \(22^{\circ} \mathrm{C}\).
Somebody claims to have developed a new reversible heat-engine cycle that has the same theoretical efficiency as the Carnot cycle operating between the same temperature limits. Is this a reasonable claim?
The kitchen, bath, and other ventilation fans in a house should be used sparingly since these fans can discharge a houseful of warmed or cooled air in just one hour. Consider a \(200-\mathrm{m}^{2}\) house whose ceiling height is \(2.8 \mathrm{m} .\) The house is heated by a 96 percent efficient gas heater and is maintained at \(22^{\circ} \mathrm{C}\) and \(92 \mathrm{kPa}\). If the unit cost of natural gas is \(\$ 1.20 /\) therm \((1 \text { therm }=105,500 \mathrm{kJ})\) determine the cost of energy "vented out" by the fans in 1 h. Assume the average outdoor temperature during the heating season to be \(5^{\circ} \mathrm{C}\)
In an effort to conserve energy in a heat-engine cycle, somebody suggests incorporating a refrigerator that will absorb some of the waste energy \(Q_{L}\) and transfer it to the energy source of the heat engine. Is this a smart idea? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.