Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A heat pump is used to maintain a house at a constant temperature of \(23^{\circ} \mathrm{C}\). The house is losing heat to the outside air through the walls and the windows at a rate of \(85,000 \mathrm{kJ} / \mathrm{h}\) while the energy generated within the house from people, lights, and appliances amounts to \(4000 \mathrm{kJ} / \mathrm{h}\). For a COP of \(3.2,\) determine the required power input to the heat pump.

Short Answer

Expert verified
Answer: The required power input to the heat pump is 7.03125 kW.

Step by step solution

01

Find the net heat loss from the house

The house loses heat to the outside air and gains heat from the people, lights, and appliances. The net heat loss from the house can be calculated as: Net heat loss = Heat loss to outside air - Heat gained from sources = 85,000 kJ/h - 4,000 kJ/h = 81,000 kJ/h
02

Find the heat supplied by the heat pump

In order to maintain a constant temperature, the heat supplied by the heat pump must be equal to the net heat loss from the house. Therefore, the heat supplied by the heat pump is: Heat supplied by the heat pump = Net heat loss from the house = 81,000 kJ/h
03

Convert the rate of heat supplied to watts

Since we need to find the power input to the heat pump, we need to convert the rate of heat supplied from kJ/h to watts. To do this, use the following conversion: 1 kJ/h = (1/3600) kW So, the rate of heat supplied in kW is: Heat supplied by the heat pump (in kW) = 81,000 kJ/h * (1/3600) kW/(kJ/h) = 22.5 kW
04

Find the required power input using COP

The COP (Coefficient of Performance) of the heat pump is given as 3.2. The formula for COP is: COP = (Heat supplied by the heat pump) / (Power input to the heat pump) Now, solving for the power input to the heat pump, we get: Power input to the heat pump = (Heat supplied by the heat pump) / (COP) = 22.5 kW / 3.2 = 7.03125 kW So, the required power input to the heat pump is 7.03125 kW.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A heat pump is absorbing heat from the cold outdoors at \(5^{\circ} \mathrm{C}\) and supplying heat to a house at \(25^{\circ} \mathrm{C}\) at a rate of \(18,000 \mathrm{kJ} / \mathrm{h}\). If the power consumed by the heat pump is \(1.9 \mathrm{kW},\) the coefficient of performance of the heat pump is \((a) 1.3\) (b) 2.6 \((c) 3.0\) \((d) 3.8\) \((e) 13.9\)

It is commonly recommended that hot foods be cooled first to room temperature by simply waiting a while before they are put into the refrigerator to save energy. Despite this commonsense recommendation, a person keeps cooking a large pan of stew three times a week and putting the pan into the refrigerator while it is still hot, thinking that the money saved is probably too little. But he says he can be convinced if you can show that the money saved is significant. The average mass of the pan and its contents is 5 kg. The average temperature of the kitchen is \(23^{\circ} \mathrm{C},\) and the average temperature of the food is \(95^{\circ} \mathrm{C}\) when it is taken off the stove. The refrigerated space is maintained at \(3^{\circ} \mathrm{C}\), and the average specific heat of the food and the pan can be taken to be \(3.9 \mathrm{kJ} / \mathrm{kg} \cdot^{\circ} \mathrm{C} .\) If the refrigerator has a coefficient of performance of 1.5 and the cost of electricity is 10 cents per \(\mathrm{kWh}\) determine how much this person will save a year by waiting

An air-conditioning system operating on the reversed Carnot cycle is required to remove heat from the house at a rate of \(32 \mathrm{kJ} / \mathrm{s}\) to maintain its temperature constant at \(20^{\circ} \mathrm{C}\) If the temperature of the outdoors is \(35^{\circ} \mathrm{C},\) the power required to operate this air-conditioning system is \((a) 0.58 \mathrm{kW}\) (b) \(3.20 \mathrm{kW}\) \((c) 1.56 \mathrm{kW}\) \((d) 2.26 \mathrm{kW}\) \((e) 1.64 \mathrm{kW}\)

A \(2.4-\mathrm{m}\) high \(200-\mathrm{m}^{2}\) house is maintained at \(22^{\circ} \mathrm{C}\) by an air-conditioning system whose COP is \(3.2 .\) It is estimated that the kitchen, bath, and other ventilating fans of the house discharge a houseful of conditioned air once every hour. If the average outdoor temperature is \(32^{\circ} \mathrm{C},\) the density of air is \(1.20 \mathrm{kg} / \mathrm{m}^{3},\) and the unit cost of electricity is \(\$ 0.10 / \mathrm{kWh}\) the amount of money "vented out" by the fans in 10 hours is \((a) \$ 0.50\) \((b) \$ 1.60\) \((c) \$ 5.00\) \((d) \$ 11.00\) \((e) \$ 16.00\)

Design a hydrocooling unit that can cool fruits and vegetables from 30 to \(5^{\circ} \mathrm{C}\) at a rate of \(20,000 \mathrm{kg} / \mathrm{h}\) under the following conditions: The unit will be of flood type, which will cool the products as they are conveyed into the channel filled with water. The products will be dropped into the channel filled with water at one end and be picked up at the other end. The channel can be as wide as \(3 \mathrm{m}\) and as high as \(90 \mathrm{cm} .\) The water is to be circulated and cooled by the evaporator section of a refrigeration system. The refrigerant temperature inside the coils is to be \(-2^{\circ} \mathrm{C}\), and the water temperature is not to drop below \(1^{\circ} \mathrm{C}\) and not to exceed \(6^{\circ} \mathrm{C}\) Assuming reasonable values for the average product density, specific heat, and porosity (the fraction of air volume in a box), recommend reasonable values for \((a)\) the water velocity through the channel and ( \(b\) ) the refrigeration capacity of the refrigeration system.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free