Chapter 6: Problem 16
A car engine with a power output of 110 hp has a thermal efficiency of 28 percent. Determine the rate of fuel consumption if the heating value of the fuel is 19,000 Btu/lbm.
Chapter 6: Problem 16
A car engine with a power output of 110 hp has a thermal efficiency of 28 percent. Determine the rate of fuel consumption if the heating value of the fuel is 19,000 Btu/lbm.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe label on a washing machine indicates that the washer will use \(\$ 85\) worth of hot water if the water is heated by a 90 percent efficient electric heater at an electricity rate of \(\$ 0.09 / \mathrm{kWh}\). If the water is heated from 18 to \(45^{\circ} \mathrm{C}\), the amount of hot water an average family uses per year is \((a) 11.6\) tons (b) 15.8 tons \((c) 27.1\) tons (d) 30.1 tons \((e) 33.5\) tons
It is well known that the thermal efficiency of heat engines increases as the temperature of the energy source increases. In an attempt to improve the efficiency of a power plant, somebody suggests transferring heat from the available energy source to a higher-temperature medium by a heat pump before energy is supplied to the power plant. What do you think of this suggestion? Explain.
Is it possible to develop \((a)\) an actual and \((b)\) a reversible heat-engine cycle that is more efficient than a Carnot cycle operating between the same temperature limits? Explain.
It is well established that the thermal efficiency of a heat engine increases as the temperature \(T_{L}\) at which heat is rejected from the heat engine decreases. In an effort to increase the efficiency of a power plant, somebody suggests refrigerating the cooling water before it enters the condenser, where heat rejection takes place. Would you be in favor of this idea? Why?
An inventor claims to have developed a heat pump that produces a 200 -kW heating effect for a \(293 \mathrm{K}\) heated zone while only using \(75 \mathrm{kW}\) of power and a heat source at \(273 \mathrm{K} .\) Justify the validity of this claim.
What do you think about this solution?
We value your feedback to improve our textbook solutions.