Chapter 5: Problem 68
Consider a steady-flow mixing process. Under what conditions will the energy transported into the control volume by the incoming streams be equal to the energy transported out of it by the outgoing stream?
Chapter 5: Problem 68
Consider a steady-flow mixing process. Under what conditions will the energy transported into the control volume by the incoming streams be equal to the energy transported out of it by the outgoing stream?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe evaporator of a refrigeration cycle is basically a heat exchanger in which a refrigerant is evaporated by absorbing heat from a fluid. Refrigerant-22 enters an evaporator at \(200 \mathrm{kPa}\) with a quality of 22 percent and a flow rate of 2.65 L/h. \(R-22\) leaves the evaporator at the same pressure superheated by \(5^{\circ} \mathrm{C}\). The refrigerant is evaporated by absorbing heat from air whose flow rate is \(0.75 \mathrm{kg} / \mathrm{s}\). Determine (a) the rate of heat absorbed from the air and ( \(b\) ) the temperature change of air. The properties of \(R-22\) at the inlet and exit of the condenser are \(h_{1}=220.2 \mathrm{kJ} / \mathrm{kg}, v_{1}=0.0253 \mathrm{m}^{3} / \mathrm{kg}\) and \(h_{2}=398.0 \mathrm{kJ} / \mathrm{kg}\).
Refrigerant 134 a enters a compressor with a mass flow rate of \(5 \mathrm{kg} / \mathrm{s}\) and a negligible velocity. The refrigerant enters the compressor as a saturated vapor at \(10^{\circ} \mathrm{C}\) and leaves the compressor at \(1400 \mathrm{kPa}\) with an enthalpy of \(281.39 \mathrm{kJ} / \mathrm{kg}\) and a velocity of \(50 \mathrm{m} / \mathrm{s}\). The rate of work done on the refrigerant is measured to be \(132.4 \mathrm{kW}\). If the elevation change between the compressor inlet and exit is negligible, determine the rate of heat transfer associated with this process, in \(\mathrm{kW}\).
Steam enters a long, insulated pipe at \(1200 \mathrm{kPa}\) \(250^{\circ} \mathrm{C},\) and \(4 \mathrm{m} / \mathrm{s},\) and exits at \(1000 \mathrm{kPa}\). The diameter of the pipe is \(0.15 \mathrm{m}\) at the inlet, and \(0.1 \mathrm{m}\) at the exit. Calculate the mass flow rate of the steam and its speed at the pipe outlet
Air at \(27^{\circ} \mathrm{C}\) and 5 atm is throttled by a valve to 1 atm. If the valve is adiabatic and the change in kinetic energy is negligible, the exit temperature of air will be \((a) 10^{\circ} \mathrm{C}\) \((b) 15^{\circ} \mathrm{C}\) \((c) 20^{\circ} \mathrm{C}\) \((d) 23^{\circ} \mathrm{C}\) \((e) 27^{\circ} \mathrm{C}\)
An ideal gas expands in an adiabatic turbine from \(1200 \mathrm{K}\) and \(900 \mathrm{kPa}\) to \(800 \mathrm{K}\). Determine the turbine inlet volume flow rate of the gas, in \(\mathrm{m}^{3} / \mathrm{s}\), required to produce turbine work output at the rate of \(650 \mathrm{kW}\). The average values of the specific heats for this gas over the temperature range and the gas constant are \(c_{p}=1.13 \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}, c_{v}=\) \(0.83 \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K},\) and \(R=0.30 \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.