Chapter 5: Problem 60
Would you expect the temperature of a liquid to change as it is throttled? Explain.
Chapter 5: Problem 60
Would you expect the temperature of a liquid to change as it is throttled? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeSteam enters a long, horizontal pipe with an inlet diameter of \(D_{1}=16 \mathrm{cm}\) at \(2 \mathrm{MPa}\) and \(300^{\circ} \mathrm{C}\) with a velocity of \(2.5 \mathrm{m} / \mathrm{s}\). Farther downstream, the conditions are \(1.8 \mathrm{MPa}\) and \(250^{\circ} \mathrm{C},\) and the diameter is \(D_{2}=14 \mathrm{cm} .\) Determine (a) the mass flow rate of the steam and ( \(b\) ) the rate of heat transfer.
The fan on a personal computer draws \(0.3 \mathrm{ft}^{3} / \mathrm{s}\) of air at 14.7 psia and \(70^{\circ} \mathrm{F}\) through the box containing the \(\mathrm{CPU}\) and other components. Air leaves at 14.7 psia and \(83^{\circ} \mathrm{F}\) Calculate the electrical power, in \(\mathrm{kW}\), dissipated by the \(\mathrm{PC}\) components.
In a gas-fired boiler, water is boiled at \(180^{\circ} \mathrm{C}\) by hot gases flowing through a stainless steel pipe submerged in water. If the rate of heat transfer from the hot gases to water is \(48 \mathrm{kJ} / \mathrm{s}\), determine the rate of evaporation of water.
Steam at \(1 \mathrm{MPa}\) and \(300^{\circ} \mathrm{C}\) is throttled adiabatically to a pressure of 0.4 MPa. If the change in kinetic energy is negligible, the specific volume of the steam after throttling is \((a) 0.358 \mathrm{m}^{3} / \mathrm{kg}\) (b) \(0.233 \mathrm{m}^{3} / \mathrm{kg}\) \((c) 0.375 \mathrm{m}^{3} / \mathrm{kg}\) \((d) 0.646 \mathrm{m}^{3} / \mathrm{kg}\) \((e) 0.655 \mathrm{m}^{3} / \mathrm{kg}\)
Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surroundings. The mixing process takes place at constant pressure with no work and negligible changes in kinetic and potential energies. Assume the gas has constant specific heats. (a) Determine the expression for the final temperature of the mixture in terms of the rate of heat transfer to the mixing chamber and the inlet and exit mass flow rates. (b) Obtain an expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber. (c) For the special case of adiabetic mixing, show that the exit volume flow rate is the sum of the two inlet volume flow rates.
What do you think about this solution?
We value your feedback to improve our textbook solutions.