Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Would you expect the temperature of a liquid to change as it is throttled? Explain.

Short Answer

Expert verified
Answer: No, the temperature of a liquid does not change significantly with throttling because liquids are incompressible and their internal energy does not change appreciably with changes in pressure, unlike gases.

Step by step solution

01

Define throttling

Throttling is a process in which the flow rate of a fluid is controlled by a device, such as a valve, which partially blocks the flow. This process induces a pressure drop in the fluid as it passes through the throttling device.
02

Discuss the Joule-Thomson effect

The Joule-Thomson effect states that when a gas is allowed to expand adiabatically (without heat exchange) through a throttling device, such as a porous plug or a valve, the temperature of the gas may change. This effect occurs when the pressure drop causes a change in the internal energy of the gas which, in turn, leads to an alteration in its temperature. The Joule-Thomson coefficient is used to determine whether the gas will heat up or cool down upon expansion.
03

Relate the Joule-Thomson effect to liquids

Unlike gases, liquids are essentially incompressible, meaning that their volume does not change significantly in response to changes in pressure. Because of this property, the Joule-Thomson effect does not significantly impact liquids as it does with gases. When a liquid is throttled, the change in internal energy is negligible, and thus the temperature change is also minimal or insignificant.
04

Conclusion

Based on the analysis of the Joule-Thomson effect and the nature of liquids, we can conclude that the temperature of a liquid would not be expected to change significantly as it is throttled. This is because liquids are incompressible and their internal energy does not change appreciably with changes in pressure, unlike gases.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Steam enters a long, horizontal pipe with an inlet diameter of \(D_{1}=16 \mathrm{cm}\) at \(2 \mathrm{MPa}\) and \(300^{\circ} \mathrm{C}\) with a velocity of \(2.5 \mathrm{m} / \mathrm{s}\). Farther downstream, the conditions are \(1.8 \mathrm{MPa}\) and \(250^{\circ} \mathrm{C},\) and the diameter is \(D_{2}=14 \mathrm{cm} .\) Determine (a) the mass flow rate of the steam and ( \(b\) ) the rate of heat transfer.

The fan on a personal computer draws \(0.3 \mathrm{ft}^{3} / \mathrm{s}\) of air at 14.7 psia and \(70^{\circ} \mathrm{F}\) through the box containing the \(\mathrm{CPU}\) and other components. Air leaves at 14.7 psia and \(83^{\circ} \mathrm{F}\) Calculate the electrical power, in \(\mathrm{kW}\), dissipated by the \(\mathrm{PC}\) components.

In a gas-fired boiler, water is boiled at \(180^{\circ} \mathrm{C}\) by hot gases flowing through a stainless steel pipe submerged in water. If the rate of heat transfer from the hot gases to water is \(48 \mathrm{kJ} / \mathrm{s}\), determine the rate of evaporation of water.

Steam at \(1 \mathrm{MPa}\) and \(300^{\circ} \mathrm{C}\) is throttled adiabatically to a pressure of 0.4 MPa. If the change in kinetic energy is negligible, the specific volume of the steam after throttling is \((a) 0.358 \mathrm{m}^{3} / \mathrm{kg}\) (b) \(0.233 \mathrm{m}^{3} / \mathrm{kg}\) \((c) 0.375 \mathrm{m}^{3} / \mathrm{kg}\) \((d) 0.646 \mathrm{m}^{3} / \mathrm{kg}\) \((e) 0.655 \mathrm{m}^{3} / \mathrm{kg}\)

Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surroundings. The mixing process takes place at constant pressure with no work and negligible changes in kinetic and potential energies. Assume the gas has constant specific heats. (a) Determine the expression for the final temperature of the mixture in terms of the rate of heat transfer to the mixing chamber and the inlet and exit mass flow rates. (b) Obtain an expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber. (c) For the special case of adiabetic mixing, show that the exit volume flow rate is the sum of the two inlet volume flow rates.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free