Chapter 5: Problem 58
Why are throttling devices commonly used in refrigeration and air-conditioning applications?
Chapter 5: Problem 58
Why are throttling devices commonly used in refrigeration and air-conditioning applications?
All the tools & learning materials you need for study success - in one app.
Get started for freeA scuba diver's \(2-\mathrm{ft}^{3}\) air tank is to be filled with air from a compressed air line at 120 psia and \(85^{\circ} \mathrm{F}\). Initially, the air in this tank is at 20 psia and \(60^{\circ} \mathrm{F}\). Presuming that the tank is well insulated, determine the temperature and mass in the tank when it is filled to 120 psia.
A 3-ft' rigid tank initially contains saturated water vapor at \(300^{\circ} \mathrm{F}\). The tank is connected by a valve to a supply line that carries steam at 200 psia and \(400^{\circ} \mathrm{F}\). Now the valve is opened, and steam is allowed to enter the tank. Heat transfer takes place with the surroundings such that the temperature in the tank remains constant at \(300^{\circ} \mathrm{F}\) at all times. The valve is closed when it is observed that one-half of the volume of the tank is occupied by liquid water. Find (a) the final pressure in the tank, ( \(b\) ) the amount of steam that has entered the \(\tan \mathrm{k},\) and \((c)\) the amount of heat transfer.
Steam enters a long, horizontal pipe with an inlet diameter of \(D_{1}=16 \mathrm{cm}\) at \(2 \mathrm{MPa}\) and \(300^{\circ} \mathrm{C}\) with a velocity of \(2.5 \mathrm{m} / \mathrm{s}\). Farther downstream, the conditions are \(1.8 \mathrm{MPa}\) and \(250^{\circ} \mathrm{C},\) and the diameter is \(D_{2}=14 \mathrm{cm} .\) Determine (a) the mass flow rate of the steam and ( \(b\) ) the rate of heat transfer.
A \(0.2-\mathrm{m}^{3}\) rigid tank equipped with a pressure regulator contains steam at \(2 \mathrm{MPa}\) and \(300^{\circ} \mathrm{C}\). The steam in the \(\operatorname{tank}\) is now heated. The regulator keeps the steam pressure constant by letting out some steam, but the temperature inside rises. Determine the amount of heat transferred when the steam temperature reaches \(500^{\circ} \mathrm{C}\).
An air-conditioning system is to be filled from a rigid container that initially contains 5 kg of liquid \(R-134 a\) at \(24^{\circ} \mathrm{C}\). The valve connecting this container to the air-conditioning system is now opened until the mass in the container is \(0.25 \mathrm{kg},\) at which time the valve is closed. During this time, only liquid \(R-134\) a flows from the container. Presuming that the process is isothermal while the valve is open, determine the final quality of the \(R-134 a\) in the container and the total heat transfer.
What do you think about this solution?
We value your feedback to improve our textbook solutions.