Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Will the temperature of air rise as it is compressed by an adiabatic compressor? Why?

Short Answer

Expert verified
Answer: Yes, the temperature of air rises during adiabatic compression due to the increase in pressure and decrease in volume, with no heat exchange with the surroundings.

Step by step solution

01

Understand Adiabatic Compression

Adiabatic compression is a process in which air is compressed without any heat exchange with the environment. During an adiabatic process, the work done on the gas is not lost as heat to the surroundings, and the process is thermally insulated.
02

Apply the Ideal Gas Law

In order to analyze the relationship between the pressure, volume, and temperature of air during an adiabatic process, we can use the Ideal Gas Law, which states: PV = nRT, where P is the pressure, V is the volume, n is the amount of gas in moles, R is the gas constant, and T is the temperature.
03

Consider Adiabatic Conditions

During an adiabatic process, work is done on the gas without heat exchange. The necessary condition for an adiabatic process is that the ratio of the pressure multiplied by the volume to the power of the specific heat ratio (γ) should remain constant: (PV^γ = constant). For air, the specific heat ratio (γ) is approximately 1.4.
04

Analyze Temperature Change

To determine whether the temperature of air rises as it is compressed by an adiabatic compressor, we can analyze the PV^γ = constant equation. When the volume decreases (compression), the pressure, P, will increase, while the term V^γ should decrease. If the increase in pressure is greater than the corresponding decrease in the V^γ term, the value of PV^γ will increase, implying that the temperature (T) will also increase.
05

Conclusion

In an adiabatic compression process, the temperature of air will rise due to the combined effects of the increase in pressure and the decrease in volume, with no heat exchange with the surroundings. The exact change in temperature will depend on the specific heat ratio (γ) of the gas and the degree of compression.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Air at \(300 \mathrm{K}\) and \(100 \mathrm{kPa}\) steadily flows into a hair dryer having electrical work input of \(1500 \mathrm{W}\). Because of the size of the air intake, the inlet velocity of the air is negligible. The air temperature and velocity at the hair dryer exit are \(80^{\circ} \mathrm{C}\) and \(21 \mathrm{m} / \mathrm{s},\) respectively. The flow process is both constant pressure and adiabatic. Assume air has constant specific heats evaluated at \(300 \mathrm{K}\). (a) Determine the air mass flow rate into the hair dryer, in \(\mathrm{kg} / \mathrm{s}\). ( \(b\) ) Determine the air volume flow rate at the hair dryer exit, in \(\mathrm{m}^{3} / \mathrm{s}\).

Refrigerant-134a at \(1.4 \mathrm{MPa}\) and \(90^{\circ} \mathrm{C}\) is throttled to a pressure of 0.6 MPa. The temperature of the refrigerant after throttling is \((a) 22^{\circ} \mathrm{C}\) \((b) 56^{\circ} \mathrm{C}\) \((c) 82^{\circ} \mathrm{C}\) \((d) 80^{\circ} \mathrm{C}\) \((e) 90^{\circ} \mathrm{C}\)

Refrigerant 134 a enters a compressor with a mass flow rate of \(5 \mathrm{kg} / \mathrm{s}\) and a negligible velocity. The refrigerant enters the compressor as a saturated vapor at \(10^{\circ} \mathrm{C}\) and leaves the compressor at \(1400 \mathrm{kPa}\) with an enthalpy of \(281.39 \mathrm{kJ} / \mathrm{kg}\) and a velocity of \(50 \mathrm{m} / \mathrm{s}\). The rate of work done on the refrigerant is measured to be \(132.4 \mathrm{kW}\). If the elevation change between the compressor inlet and exit is negligible, determine the rate of heat transfer associated with this process, in \(\mathrm{kW}\).

Liquid water at \(300 \mathrm{kPa}\) and \(20^{\circ} \mathrm{C}\) is heated in a chamber by mixing it with superheated steam at \(300 \mathrm{kPa}\) and \(300^{\circ} \mathrm{C}\). Cold water enters the chamber at a rate of \(1.8 \mathrm{kg} / \mathrm{s} .\) If the mixture leaves the mixing chamber at \(60^{\circ} \mathrm{C}\) determine the mass flow rate of the superheated steam required. Answer: \(0.107 \mathrm{kg} / \mathrm{s}\)

A building with an internal volume of \(400 \mathrm{m}^{3}\) is to be heated by a 30 -kW electric resistance heater placed in the duct inside the building. Initially, the air in the building is at \(14^{\circ} \mathrm{C},\) and the local atmospheric pressure is 95 kPa. The building is losing heat to the surroundings at a steady rate of \(450 \mathrm{kJ} / \mathrm{min}\). Air is forced to flow through the duct and the heater steadily by a \(250-\mathrm{W}\) fan, and it experiences a temperature rise of \(5^{\circ} \mathrm{C}\) each time it passes through the duct, which may be assumed to be adiabatic. (a) How long will it take for the air inside the building to reach an average temperature of \(24^{\circ} \mathrm{C} ?\) (b) Determine the average mass flow rate of air through the duct.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free