Calculate Specific Volumes, Enthalpies, and Kinetic Energies
Use the ideal gas law to calculate initial and final specific volumes:
\(P_1 = 300 \,\mathrm{psia} \rightarrow P_1 = 300 * 144 \,\mathrm{lb} \,\mathrm{ft}^{-1} \, \mathrm{s}^{2}\) (convert pressure to \(\mathrm{lb} \,\mathrm{ft}^{-1} \, \mathrm{s}^{2}\))
\(P_2 = 250 \,\mathrm{psia} \rightarrow P_2 = 250 * 144 \, \mathrm{lb} \,\mathrm{ft}^{-1} \, \mathrm{s}^{2}\)
\(v_1 = \frac{R T_1}{P_1}\) (where \(R\) is the specific gas constant for dry air, \(R = 53.35 \,\mathrm{ft}\,\mathrm{lb}\,\mathrm{R}^{-1}\,\mathrm{lb}^{-1}\,\mathrm{s}^{-2}\))
\(v_2 = \frac{R T_2}{P_2}\)
Calculate the initial and final specific enthalpies, where \(c_p\) is the specific heat of air at constant pressure, \(c_p = 0.24 \,{\mathrm{Btu}\,\mathrm{lb}^{-1}\,\mathrm{R}^{-1}}\) :
\(h_1 = c_p T_1\)
\(h_2 = c_p T_2\)
Calculate initial and final kinetic energies, where \(g_c = 32.174 \,{\mathrm{lb}\, \mathrm{ft}\, \mathrm{lb}^{-1}\, \mathrm{s}^{-2}}\):
\(KE_1 = \frac{1}{2} \frac{v_1^2}{g_c}\)
\(KE_2 = \frac{1}{2} \frac{v_2^2}{g_c}\)