Chapter 5: Problem 18
How do the energies of a flowing fluid and a fluid at rest compare? Name the specific forms of energy associated with each case.
Chapter 5: Problem 18
How do the energies of a flowing fluid and a fluid at rest compare? Name the specific forms of energy associated with each case.
All the tools & learning materials you need for study success - in one app.
Get started for freeSteam enters a diffuser steadily at \(0.5 \mathrm{MPa}, 300^{\circ} \mathrm{C}\) and \(122 \mathrm{m} / \mathrm{s}\) at a rate of \(3.5 \mathrm{kg} / \mathrm{s}\). The inlet area of the diffuser is \((a) 15 \mathrm{cm}^{2}\) \((b) 50 \mathrm{cm}^{2}\) \((c) 105 \mathrm{cm}^{2}\) \((d) 150 \mathrm{cm}^{2}\) \((e) 190 \mathrm{cm}^{2}\)
A \(2-m^{3}\) rigid insulated tank initially containing saturated water vapor at \(1 \mathrm{MPa}\) is connected through a valve to a supply line that carries steam at \(400^{\circ} \mathrm{C}\). Now the valve is opened, and steam is allowed to flow slowly into the tank until the pressure in the tank rises to 2 MPa. At this instant the tank temperature is measured to be \(300^{\circ} \mathrm{C}\). Determine the mass of the steam that has entered and the pressure of the steam in the supply line.
A vertical piston-cylinder device initially contains \(0.25 \mathrm{m}^{3}\) of air at \(600 \mathrm{kPa}\) and \(300^{\circ} \mathrm{C}\). A valve connected to the cylinder is now opened, and air is allowed to escape until three-quarters of the mass leave the cylinder at which point the volume is \(0.05 \mathrm{m}^{3} .\) Determine the final temperature in the cylinder and the boundary work during this process.
Steam is compressed by an adiabatic compressor from \(0.2 \mathrm{MPa}\) and \(150^{\circ} \mathrm{C}\) to \(0.8 \mathrm{MPa}\) and \(350^{\circ} \mathrm{C}\) at a rate of \(1.30 \mathrm{kg} / \mathrm{s} .\) The power input to the compressor is (a) \(511 \mathrm{kW}\) \((b) 393 \mathrm{kW}\) \((c) 302 \mathrm{kW}\) \((d) 717 \mathrm{kW}\) \((e) 901 \mathrm{kW}\)
Consider a 35 -L evacuated rigid bottle that is surrounded by the atmosphere at \(100 \mathrm{kPa}\) and \(22^{\circ} \mathrm{C}\). A valve at the neck of the bottle is now opened and the atmospheric air is allowed to flow into the bottle. The air trapped in the bottle eventually reaches thermal equilibrium with the atmosphere as a result of heat transfer through the wall of the bottle. The valve remains open during the process so that the trapped air also reaches mechanical equilibrium with the atmosphere. Determine the net heat transfer through the wall of the bottle during this filling process.
What do you think about this solution?
We value your feedback to improve our textbook solutions.