Chapter 4: Problem 1
An ideal gas at a given state expands to a fixed final volume first at constant pressure and then at constant temperature. For which case is the work done greater?
Chapter 4: Problem 1
An ideal gas at a given state expands to a fixed final volume first at constant pressure and then at constant temperature. For which case is the work done greater?
All the tools & learning materials you need for study success - in one app.
Get started for freeIs the relation \(\Delta h=m c_{p, \text { avg }} \Delta T\) restricted to constant-pressure processes only, or can it be used for any kind of process of an ideal gas?
Determine the enthalpy change \(\Delta h\) of nitrogen, in \(\mathrm{kJ} / \mathrm{kg}\) as it is heated from 600 to \(1000 \mathrm{K},\) using \((a)\) the empirical specific heat equation as a function of temperature (Table \(A-2 c)\) (b) the \(c_{p}\) value at the average temperature (Table \(A-2 b\) ), and \(\left.(c) \text { the } c_{p} \text { value at room temperature (Table } A-2 a\right)\).
A closed system undergoes a process in which there is no internal energy change. During this process, the system produces \(1.1 \times 10^{6}\) lbf.ft of work. Calculate the heat transfer for this process, in Btu.
1-kg of water that is initially at \(90^{\circ} \mathrm{C}\) with a quality of 10 percent occupies a spring-loaded piston-cylinder device, such as that in Fig. \(\mathrm{P} 4-21 .\) This device is now heated until the pressure rises to \(800 \mathrm{kPa}\) and the temperature is \(250^{\circ} \mathrm{C}\). Determine the total work produced during this process, in kJ.
In solar-heated buildings, energy is often stored as sensible heat in rocks, concrete, or water during the day for use at night. To minimize the storage space, it is desirable to use a material that can store a large amount of heat while experiencing a small temperature change. A large amount of heat can be stored essentially at constant temperature during a phase change process, and thus materials that change phase at about room temperature such as glaubers salt (sodium sulfate decahydrate), which has a melting point of \(32^{\circ} \mathrm{C}\) and a heat of fusion of \(329 \mathrm{kJ} / \mathrm{L},\) are very suitable for this purpose. Determine how much heat can be stored in a \(5-\mathrm{m}^{3}\) storage space using (a) glaubers salt undergoing a phase change, (b) granite rocks with a heat capacity of \(2.32 \mathrm{kJ} / \mathrm{kg} \cdot^{\circ} \mathrm{C}\) and a temperature change of \(20^{\circ} \mathrm{C},\) and \((c)\) water with a heat capacity of \(4.00 \mathrm{kJ} / \mathrm{k} \cdot^{\circ} \mathrm{C}\) and a temperature change of \(20^{\circ} \mathrm{C}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.