Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A thermoelectric cooler has a COP of 0.18 and the power input to the cooler is 1.8 hp. Determine the rate of heat removed from the refrigerated space, in \(\mathrm{Btu} / \mathrm{min}\).

Short Answer

Expert verified
Answer: The rate of heat removed is approximately 13.736 BTU/min.

Step by step solution

01

Convert horsepower to BTU/min

First, we need to convert the power input of 1.8 hp to BTU/min. We know that 1 hp is equal to 42.4 BTU/min. Therefore, we will multiply the power input by the conversion factor: Power input in BTU/min = 1.8 hp × 42.4 \(\frac{\mathrm{BTU}}{\mathrm{min}} / \mathrm{hp}\)
02

Calculate the rate of heat removed

Now we can use the formula mentioned earlier: Rate of heat removed = COP × power input We have the COP = 0.18 and the power input in BTU/min from step 1. Let's plug in the values and calculate the rate of heat removed: Rate of heat removed = 0.18 × (1.8 × 42.4) \(\frac{\mathrm{BTU}}{\mathrm{min}}\)
03

Simplify the expression

Now, let's simplify the expression to get the answer: Rate of heat removed = 0.18 × 76.32 \(\frac{\mathrm{BTU}}{\mathrm{min}}\)
04

Calculate the final value

Finally, let's multiply the values to get the rate of heat removed: Rate of heat removed = 13.736 \(\frac{\mathrm{BTU}}{\mathrm{min}}\) The rate of heat removed from the refrigerated space is approximately 13.736 BTU/min.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A thermoelectric refrigerator removes heat from a refrigerated space at \(-5^{\circ} \mathrm{C}\) at a rate of \(130 \mathrm{W}\) and rejects it to an environment at \(20^{\circ} \mathrm{C}\). Determine the maximum coefficient of performance this thermoelectric refrigerator can have and the minimum required power input.

A gas refrigeration system using air as the working fluid has a pressure ratio of \(5 .\) Air enters the compressor at \(0^{\circ} \mathrm{C} .\) The high- pressure air is cooled to \(35^{\circ} \mathrm{C}\) by rejecting heat to the surroundings. The refrigerant leaves the turbine at \(-80^{\circ} \mathrm{C}\) and enters the refrigerated space where it absorbs heat before entering the regenerator. The mass flow rate of air is \(0.4 \mathrm{kg} / \mathrm{s}\). Assuming isentropic efficiencies of 80 percent for the compressor and 85 percent for the turbine and using variable specific heats, determine ( \(a\) ) the effectiveness of the regenerator, \((b)\) the rate of heat removal from the refrigerated space, and \((c)\) the \(\mathrm{COP}\) of the cycle. Also, determine \((d)\) the refrigeration load and the COP if this system operated on the simple gas refrigeration cycle. Use the same compressor inlet temperature as given, the same turbine inlet temperature as calculated, and the same compressor and turbine efficiencies.

Describe the Seebeck and the Peltier effects.

Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at \(0.20 \mathrm{MPa}\) and \(-5^{\circ} \mathrm{C}\) at a rate of \(0.07 \mathrm{kg} / \mathrm{s},\) and it leaves at \(1.2 \mathrm{MPa}\) and \(70^{\circ} \mathrm{C}\). The refrigerant is cooled in the condenser to \(44^{\circ} \mathrm{C}\) and \(1.15 \mathrm{MPa}\), and it is throttled to 0.21 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, show the cycle on a \(T\) -s diagram with respect to saturation lines, and determine ( \(a\) ) the rate of heat removal from the refrigerated space and the power input to the compressor, \((b)\) the isentropic efficiency of the compressor, and \((c)\) the \(C O P\) of the refrigerator.

Consider a regenerative gas refrigeration cycle using helium as the working fluid. Helium enters the compressor at \(100 \mathrm{kPa}\) and \(-10^{\circ} \mathrm{C}\) and is compressed to \(300 \mathrm{kPa}\). Helium is then cooled to \(20^{\circ} \mathrm{C}\) by water. It then enters the regenerator where it is cooled further before it enters the turbine. Helium leaves the refrigerated space at \(-25^{\circ} \mathrm{C}\) and enters the regenerator. Assuming both the turbine and the compressor to be isentropic, determine ( \(a\) ) the temperature of the helium at the turbine inlet, ( \(b\) ) the coefficient of performance of the cycle, and ( \(c\) ) the net power input required for a mass flow rate of \(0.45 \mathrm{kg} / \mathrm{s}\).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free