Chapter 11: Problem 29
A vapor-compression refrigeration system absorbs heat from a space at \(0^{\circ} \mathrm{C}\) at a rate of \(24,000 \mathrm{Btu} / \mathrm{h}\) and rejects heat to water in the condenser. The water experiences a temperature rise of \(12^{\circ} \mathrm{C}\) in the condenser. The COP of the system is estimated to be \(2.05 .\) Determine \((a)\) the power input to the system, in \(\mathrm{kW},(b)\) the mass flow rate of water through the condenser, and \((c)\) the second-law efficiency and the exergy destruction for the refrigerator. Take \(T_{0}=20^{\circ} \mathrm{C}\) and \(c_{p, \text { water }}=4.18 \mathrm{kJ} / \mathrm{kg} \cdot^{\circ} \mathrm{C}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.