Chapter 11: Problem 17
Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at \(0.20 \mathrm{MPa}\) and \(-5^{\circ} \mathrm{C}\) at a rate of \(0.07 \mathrm{kg} / \mathrm{s},\) and it leaves at \(1.2 \mathrm{MPa}\) and \(70^{\circ} \mathrm{C}\). The refrigerant is cooled in the condenser to \(44^{\circ} \mathrm{C}\) and \(1.15 \mathrm{MPa}\), and it is throttled to 0.21 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, show the cycle on a \(T\) -s diagram with respect to saturation lines, and determine ( \(a\) ) the rate of heat removal from the refrigerated space and the power input to the compressor, \((b)\) the isentropic efficiency of the compressor, and \((c)\) the \(C O P\) of the refrigerator.