Chapter 11: Problem 119
Consider a regenerative gas refrigeration cycle using helium as the working fluid. Helium enters the compressor at \(100 \mathrm{kPa}\) and \(-10^{\circ} \mathrm{C}\) and is compressed to \(300 \mathrm{kPa}\). Helium is then cooled to \(20^{\circ} \mathrm{C}\) by water. It then enters the regenerator where it is cooled further before it enters the turbine. Helium leaves the refrigerated space at \(-25^{\circ} \mathrm{C}\) and enters the regenerator. Assuming both the turbine and the compressor to be isentropic, determine ( \(a\) ) the temperature of the helium at the turbine inlet, ( \(b\) ) the coefficient of performance of the cycle, and ( \(c\) ) the net power input required for a mass flow rate of \(0.45 \mathrm{kg} / \mathrm{s}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.