Chapter 10: Problem 9
How do actual vapor power cycles differ from idealized ones?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 10: Problem 9
How do actual vapor power cycles differ from idealized ones?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe closed feed water heater of a regenerative Rankine cycle is to heat 7000 kPa feed water from \(260^{\circ} \mathrm{C}\) to a saturated liquid. The turbine supplies bleed steam at \(6000 \mathrm{kPa}\) and \(325^{\circ} \mathrm{C}\) to this unit. This steam is condensed to a saturated liquid before entering the pump. Calculate the amount of bleed steam required to heat \(1 \mathrm{kg}\) of feed water in this unit.
A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of \(15 \mathrm{MPa}\) and 10 kPa. The mass flow rate of steam through the cycle is \(12 \mathrm{kg} / \mathrm{s} .\) Steam enters both stages of the turbine at \(500^{\circ} \mathrm{C}\) If the moisture content of the steam at the exit of the low pressure turbine is not to exceed 10 percent, determine \((a)\) the pressure at which reheating takes place, ( \(b\) ) the total rate of heat input in the boiler, and \((c)\) the thermal efficiency of the cycle. Also, show the cycle on a \(T\) -s diagram with respect to saturation lines.
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 800 psia and \(900^{\circ} \mathrm{F}\) and leaves as saturated vapor. Steam is then reheated to \(800^{\circ} \mathrm{F}\) before it expands to a pressure of 1 psia. Heat is transferred to the steam in the boiler at a rate of \(6 \times 10^{4}\) Btu/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at \(45^{\circ} \mathrm{F}\). Show the cycle on a \(T\) -s diagram with respect to saturation lines, and determine ( \(a\) ) the pressure at which reheating takes place, \((b)\) the net power output and thermal efficiency, and \((c)\) the minimum mass flow rate of the cooling water required.
A steam power plant operates on an ideal reheat regenerative Rankine cycle with one reheater and two feedwater heaters, one open and one closed. Steam enters the high-pressure turbine at \(15 \mathrm{MPa}\) and \(600^{\circ} \mathrm{C}\) and the low-pressure turbine at 1 MPa and \(500^{\circ} \mathrm{C}\). The condenser pressure is 5 kPa. Steam is extracted from the turbine at \(0.6 \mathrm{MPa}\) for the closed feedwater heater and at 0.2 MPa for the open feedwater heater. In the closed feedwater heater, the feedwater is heated to the condensation temperature of the extracted steam. The extracted steam leaves the closed feedwater heater as a saturated liquid, which is subsequently throttled to the open feedwater heater. Show the cycle on a \(T-s\) diagram with respect to saturation lines. Determine \((a)\) the fraction of steam extracted from the turbine for the open feedwater heater, \((b)\) the thermal efficiency of the cycle, and \((c)\) the net power output for a mass flow rate of \(42 \mathrm{kg} / \mathrm{s}\) through the boiler
Refrigerant-134a is used as the working fluid in a simple ideal Rankine cycle which operates the boiler at \(2000 \mathrm{kPa}\) and the condenser at \(24^{\circ} \mathrm{C}\). The mixture at the exit of the turbine has a quality of 93 percent. Determine the turbine inlet temperature, the cycle thermal efficiency, and the back-work ratio of this cycle.
What do you think about this solution?
We value your feedback to improve our textbook solutions.