Chapter 10: Problem 68
Consider a cogeneration plant for which the utilization factor is \(0.5 .\) Can the exergy destruction associated with this plant be zero? If yes, under what conditions?
Chapter 10: Problem 68
Consider a cogeneration plant for which the utilization factor is \(0.5 .\) Can the exergy destruction associated with this plant be zero? If yes, under what conditions?
All the tools & learning materials you need for study success - in one app.
Get started for freeA steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of \(15 \mathrm{MPa}\) and 10 kPa. The mass flow rate of steam through the cycle is \(12 \mathrm{kg} / \mathrm{s} .\) Steam enters both stages of the turbine at \(500^{\circ} \mathrm{C}\) If the moisture content of the steam at the exit of the low pressure turbine is not to exceed 10 percent, determine \((a)\) the pressure at which reheating takes place, ( \(b\) ) the total rate of heat input in the boiler, and \((c)\) the thermal efficiency of the cycle. Also, show the cycle on a \(T\) -s diagram with respect to saturation lines.
A steam power plant operates on an ideal Rankine cycle with two stages of reheat and has a net power output of \(75 \mathrm{MW}\). Steam enters all three stages of the turbine at \(550^{\circ} \mathrm{C}\) The maximum pressure in the cycle is \(10 \mathrm{MPa}\), and the minimum pressure is 30 kPa. Steam is reheated at 4 MPa the first time and at 2 MPa the second time. Show the cycle on a \(T-s\) diagram with respect to saturation lines, and determine (a) the thermal efficiency of the cycle, and ( \(b\) ) the mass flow rate of the steam.
A large food-processing plant requires \(1.5 \mathrm{lbm} / \mathrm{s}\) of saturated or slightly superheated steam at 140 psia, which is extracted from the turbine of a cogeneration plant. The boiler generates steam at 800 psia and \(1000^{\circ} \mathrm{F}\) at a rate of \(10 \mathrm{lbm} / \mathrm{s}\) and the condenser pressure is 2 psia. Steam leaves the process heater as a saturated liquid. It is then mixed with the feedwater at the same pressure and this mixture is pumped to the boiler pressure. Assuming both the pumps and the turbine have isentropic efficiencies of 86 percent, determine \((a)\) the rate of heat transfer to the boiler and ( \(b\) ) the power output of the cogeneration plant.
A textile plant requires \(4 \mathrm{kg} / \mathrm{s}\) of saturated steam at \(2 \mathrm{MPa},\) which is extracted from the turbine of a cogeneration plant. Steam enters the turbine at \(8 \mathrm{MPa}\) and \(500^{\circ} \mathrm{C}\) at a rate of \(11 \mathrm{kg} / \mathrm{s}\) and leaves at \(20 \mathrm{kPa}\). The extracted steam leaves the process heater as a saturated liquid and mixes with the feedwater at constant pressure. The mixture is pumped to the boiler pressure. Assuming an isentropic efficiency of 88 percent for both the turbine and the pumps, determine \((a)\) the rate of process heat supply, \((b)\) the net power output, and \((c)\) the utilization factor of the plant.
By writing an energy balance on the heat exchanger of a binary vapor power cycle, obtain a relation for the ratio of mass flow rates of two fluids in terms of their enthalpies.
What do you think about this solution?
We value your feedback to improve our textbook solutions.