Chapter 10: Problem 66
How is the utilization factor \(\epsilon_{u}\) for cogeneration plants defined? Could \(\epsilon_{u}\) be unity for a cogeneration plant that does not produce any power?
Chapter 10: Problem 66
How is the utilization factor \(\epsilon_{u}\) for cogeneration plants defined? Could \(\epsilon_{u}\) be unity for a cogeneration plant that does not produce any power?
All the tools & learning materials you need for study success - in one app.
Get started for freeDuring a regeneration process, some steam is extracted from the turbine and is used to heat the liquid water leaving the pump. This does not seem like a smart thing to do since the extracted steam could produce some more work in the turbine. How do you justify this action?
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at \(6 \mathrm{MPa}\) and \(450^{\circ} \mathrm{C}\) and is condensed in the condenser at \(20 \mathrm{kPa}\). Steam is extracted from the turbine at \(0.4 \mathrm{MPa}\) to heat the feed water in an open feed water heater. Water leaves the feed water heater as a saturated liquid. Show the cycle on a \(T\) -s diagram, and determine ( \(a\) ) the net work output per kilogram of steam flowing through the boiler and ( \(b\) ) the thermal efficiency of the cycle.
The gas-turbine portion of a combined gas-steam power plant has a pressure ratio of \(16 .\) Air enters the compressor at \(300 \mathrm{K}\) at a rate of \(14 \mathrm{kg} / \mathrm{s}\) and is heated to \(1500 \mathrm{K}\) in the combustion chamber. The combustion gases leaving the gas turbine are used to heat the steam to \(400^{\circ} \mathrm{C}\) at \(10 \mathrm{MPa}\) in a heat exchanger. The combustion gases leave the heat exchanger at 420 K. The steam leaving the turbine is condensed at 15 kPa. Assuming all the compression and expansion processes to be isentropic, determine \((a)\) the mass flow rate of the steam, \((b)\) the net power output, and \((c)\) the thermal efficiency of the combined cycle. For air, assume constant specific heats at room temperature.
Design a steam power cycle that can achieve a cycle thermal efficiency of at least 40 percent under the conditions that all turbines have isentropic efficiencies of 85 percent and all pumps have isentropic efficiencies of 60 percent. Prepare an engineering report describing your design. Your design report must include, but is not limited to, the following: (a) Discussion of various cycles attempted to meet the goal as well as the positive and negative aspects of your design. (b) System figures and \(T\) -s diagrams with labeled states and temperature, pressure, enthalpy, and entropy information for your design. \((c)\) Sample calculations
Why is the Carnot cycle not a realistic model for steam power plants?
What do you think about this solution?
We value your feedback to improve our textbook solutions.