Chapter 1: Problem 97
It is well-known that cold air feels much colder in windy weather than what the thermometer reading indicates because of the "chilling effect" of the wind. This effect is due to the increase in the convection heat transfer coefficient with increasing air velocities. The equivalent wind chill temperature in \(^{\circ} \mathrm{F}\) is given by \([\mathrm{ASHRAE},\) Handbook of Fundamentals (Atlanta, GA, \(1993 \text { ), p. } 8.15]\) $$\begin{aligned} T_{\mathrm{equiv}}=& 91.4-\left(91.4-T_{\text {anbient }}\right) \\ & \times(0.475-0.0203 V+0.304 \sqrt{V}) \end{aligned}$$ where \(V\) is the wind velocity in \(\mathrm{mi} / \mathrm{h}\) and \(T_{\text {ambicnt }}\) is the ambient air temperature in \(^{\circ} \mathrm{F}\) in calm air, which is taken to be air with light winds at speeds up to \(4 \mathrm{mi} / \mathrm{h}\). The constant \(91.4^{\circ} \mathrm{F}\) in the given equation is the mean skin temperature of a resting person in a comfortable environment. Windy air at temperature \(T_{\text {ambient }}\) and velocity \(V\) will feel as cold as the calm air at temperature \(T_{\text {equiv. }}\) Using proper conversion factors, obtain an equivalent relation in SI units where \(V\) is the wind velocity in \(\mathrm{km} / \mathrm{h}\) and \(T_{\text {ambient }}\) is the ambient air temperature in \(^{\circ} \mathrm{C}\)