(b)
The expression for the initial rotational kinetic energy of the system can be written as:
\(\begin{aligned}{c}K{E_1} &= \frac{1}{2}{I_1}\omega _1^2\\K{E_1} &= \frac{1}{2}\left( {\frac{2}{5}{M_1}R_1^2} \right){\left( {\frac{{2\pi }}{{{T_1}}}} \right)^2}\\K{E_1} &= \frac{1}{2} \times \frac{2}{5}M{R^2} \times {\left( {2\pi } \right)^2} \times {\left( {\frac{1}{{30\;{\rm{days}}}}} \right)^2}\end{aligned}\) … (i)
The expression for the final rotational kinetic energy of the system can be written as:
\(\begin{aligned}{c}K{E_2} &= \frac{1}{2}{I_2}\omega _2^2\\K{E_2} &= \frac{1}{2}\left( {\frac{2}{5}{M_2}R_2^2} \right){\left( {\frac{{2\pi }}{{{T_2}}}} \right)^2}\\K{E_2} &= \frac{1}{2}\left( {\frac{2}{5}\frac{M}{2}{{\left( {0.01R} \right)}^2}} \right){\left( {2\pi } \right)^2}{\left( {\frac{1}{{\frac{1}{2} \times {{10}^{ - 4}} \times \left( {30\;{\rm{days}}} \right)}}} \right)^2}\end{aligned}\) … (ii)
Now, divide equation (ii) by equation (i).
\(\begin{aligned}{c}\frac{{K{E_2}}}{{K{E_1}}} &= \frac{{\frac{1}{2}\left( {\frac{2}{5}\frac{M}{2}{{\left( {0.01R} \right)}^2}} \right){{\left( {2\pi } \right)}^2}{{\left( {\frac{1}{{\frac{1}{2} \times {{10}^{ - 4}} \times \left( {30\;{\rm{days}}} \right)}}} \right)}^2}}}{{\left( {\frac{1}{2} \times \frac{2}{5}M{R^2} \times {{\left( {2\pi } \right)}^2} \times {{\left( {\frac{1}{{30\;{\rm{days}}}}} \right)}^2}} \right)}}\\\frac{{K{E_2}}}{{K{E_1}}} &= 2 \times {10^4}\\K{E_2} &= \left( {2 \times {{10}^4}} \right)K{E_1}\end{aligned}\)
Thus, the final kinetic energy in terms of its initial kinetic energy today would be \(\left( {2 \times {{10}^4}} \right)K{E_1}\).