Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Suppose a power plant delivers energy at 880 MW using steam turbines. The steam goes into the turbines superheated at 625 K and deposits its unused heat in river water at 285 K. Assume that the turbine operates as an ideal Carnot engine. (a) If the river flow rate is \({\bf{37}}\;{{{{\bf{m}}^{\bf{3}}}} \mathord{\left/{\vphantom {{{{\bf{m}}^{\bf{3}}}} {\bf{s}}}} \right.} {\bf{s}}}\), estimate the average temperature increase of the river water immediately downstream from the power plant. (b) What is the entropy increase per kilogram of the downstream river water in \({{\bf{J}} \mathord{\left/{\vphantom {{\bf{J}} {{\bf{kg}} \cdot {\bf{k}}}}} \right.} {{\bf{kg}} \cdot {\bf{k}}}}\)?

Short Answer

Expert verified

(a) The average temperature increase of the river water is \(4.7\;{\rm{K}}\).

(b)The entropy increase per kilogram of the downstream river water is\(69.46\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {{\rm{kg}} \cdot {\rm{K}}}}} \right.} {{\rm{kg}} \cdot {\rm{K}}}}\).

Step by step solution

01

Understanding entropy

The entropy is the measure of the disorder in a particular thermodynamic system. It is related to the spread of energy among the available molecular energy levels.

02

Given information

Given data:

The power is \(P = 880\;{\rm{MW}}\).

The lower temperature is \({T_{\rm{L}}} = 285\;{\rm{K}}\).

The higher temperature is \({T_{\rm{H}}} = 625\;{\rm{K}}\).

The volume flow rate is \(\frac{V}{t} = 37\;{{{{\rm{m}}^{\rm{3}}}} \mathord{\left/{\vphantom {{{{\rm{m}}^{\rm{3}}}} {\rm{s}}}} \right.} {\rm{s}}}\).

03

Evaluation of the average temperature increase of the river water

(a)

The expression for the efficiency of the heat engine is

\(e = 1 - \frac{{{T_{\rm{L}}}}}{{{T_{\rm{H}}}}}\). … (i)

The expression for the efficiency of a heat engine in terms of work done \(\left( W \right)\) and heat given to the system \(\left( {{Q_{\rm{H}}}} \right)\) is

\(e = \frac{W}{{{Q_{\rm{H}}}}}\). … (ii)

The work done by the system is equal to the difference in heat given to the system \(\left( {{Q_{\rm{H}}}} \right)\) and heat coming out from the system \(\left( {{Q_{\rm{L}}}} \right)\). Therefore,

\({Q_{\rm{H}}} = W + {Q_{\rm{L}}}\). … (iii)

Substitute the value of equation (iii) in equation (ii).

\(\begin{aligned}{c}e &= \frac{W}{{W + {Q_{\rm{L}}}}}\\W + {Q_{\rm{L}}} &= \frac{W}{e}\\{Q_{\rm{L}}} &= W\left( {\frac{1}{e} - 1} \right)\end{aligned}\)

Substitute the value of equation (i) in the above equation.

\(\begin{aligned}{c}{Q_{\rm{L}}} &= W\left( {\frac{1}{{\left( {\frac{{{T_{\rm{H}}} - {T_{\rm{L}}}}}{{{T_{\rm{H}}}}}} \right)}} - 1} \right)\\{Q_{\rm{L}}} &= W\left( {\frac{{{T_{\rm{L}}}}}{{{T_{\rm{H}}} - {T_{\rm{L}}}}}} \right)\end{aligned}\)

Express the above equation in terms of heat rejection rate by dividing the above equation by \(t\).

\(\begin{aligned}{c}\frac{{{Q_{\rm{L}}}}}{t} &= \frac{W}{t}\left( {\frac{{{T_{\rm{L}}}}}{{{T_{\rm{H}}} - {T_{\rm{L}}}}}} \right)\\\frac{{{Q_{\rm{L}}}}}{t} &= P\left( {\frac{{{T_{\rm{L}}}}}{{{T_{\rm{H}}} - {T_{\rm{L}}}}}} \right)\end{aligned}\) … (iv)

The expression for the heat energy given to the power plant is

\({Q_{\rm{L}}} = mc\Delta T\).

This equation can also be written as shown below

\(\begin{aligned}{c}m &= \frac{{\left( {\frac{{{Q_{\rm{L}}}}}{t}} \right)t}}{{c\Delta T}}\\\rho V &= \frac{{\left( {\frac{{{Q_{\rm{L}}}}}{t}} \right)t}}{{c\Delta T}}\\V &= \frac{{\left( {\frac{{{Q_{\rm{L}}}}}{t}} \right)t}}{{\rho c\Delta T}}\\\frac{{{Q_{\rm{L}}}}}{t} &= \frac{{\rho Vc\Delta T}}{t}\end{aligned}\). … (v)

Here, \(\rho \) is the density of the water with the value \(1 \times {10^3}\;{{{\rm{kg}}} \mathord{\left/{\vphantom {{{\rm{kg}}} {{{\rm{m}}^{\rm{3}}}}}} \right.} {{{\rm{m}}^{\rm{3}}}}}\), and \(c\) is the specific heat of the water with the value \(4186\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {{\rm{kg}} \cdot {\rm{K}}}}} \right.} {{\rm{kg}} \cdot {\rm{K}}}}\).

Equate equations (iv) and (v).

\(\begin{aligned}{c}P\left( {\frac{{{T_{\rm{L}}}}}{{{T_{\rm{H}}} - {T_{\rm{L}}}}}} \right) &= \frac{{\rho Vc\Delta T}}{t}\\\Delta T &= \frac{P}{{\rho \left( {\frac{V}{t}} \right)c}}\left( {\frac{{{T_{\rm{L}}}}}{{{T_{\rm{H}}} - {T_{\rm{L}}}}}} \right)\end{aligned}\)

Substitute the values in the above equation.

\(\begin{aligned}{c}\Delta T &= \frac{{\left( {880\;{\rm{MW}}} \right)\left( {\frac{{{{10}^6}\;{\rm{W}}}}{{1\;{\rm{MW}}}}} \right)}}{{\left( {1 \times {{10}^3}\;{{{\rm{kg}}} \mathord{\left/{\vphantom {{{\rm{kg}}} {{{\rm{m}}^{\rm{3}}}}}} \right.} {{{\rm{m}}^{\rm{3}}}}}} \right)\left( {37\;{{{{\rm{m}}^{\rm{3}}}} \mathord{\left/{\vphantom {{{{\rm{m}}^{\rm{3}}}} {\rm{s}}}} \right.} {\rm{s}}}} \right)\left( {4186\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {{\rm{kg}} \cdot {\rm{K}}}}} \right.} {{\rm{kg}} \cdot {\rm{K}}}}} \right)}}\left( {\frac{{285\;{\rm{K}}}}{{625\;{\rm{K}} - 285\;{\rm{K}}}}} \right)\\\Delta T &= 4.7\;{\rm{K}}\end{aligned}\)

Thus, the average temperature increase of the river water is \(4.7\;{\rm{K}}\).

04

Evaluation of the entropy increase per kilogram of the downstream river water

(b)

The expression for the increase in entropy is

\(\Delta S = \frac{Q}{{\Delta T}}\). … (vi)

The expression for the heat given to the system is

\(Q = mc\Delta T\). … (vii)

The expression for the average temperature of the system is

\(\Delta T = {T_{\rm{L}}} + \frac{1}{2}\Delta T\). … (viii)

Substitute the values of equations (vii) and (viii) in equation (vi).

\(\begin{aligned}{c}\Delta S &= \frac{{mc\Delta T}}{{{T_{\rm{L}}} + \frac{1}{2}\Delta T}}\\\frac{{\Delta S}}{m} &= \frac{{c\Delta T}}{{{T_{\rm{L}}} + \frac{1}{2}\Delta T}}\end{aligned}\)

Substitute the values in the above equation.

\(\begin{aligned}{c}\frac{{\Delta S}}{m} &= \frac{{\left( {4186\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {{\rm{kg}} \cdot {\rm{K}}}}} \right.} {{\rm{kg}} \cdot {\rm{K}}}}} \right)\left( {4.7\;{\rm{K}}} \right)}}{{\left( {285\;{\rm{K}}} \right) + \frac{1}{2}\left( {4.7\;{\rm{K}}} \right)}}\\\frac{{\Delta S}}{m} &= 69.46\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {{\rm{kg}} \cdot {\rm{K}}}}} \right. } {{\rm{kg}} \cdot {\rm{K}}}}\end{aligned}\)

Thus, the entropy increase per kilogram of the downstream river water is\(69.46\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {{\rm{kg}} \cdot {\rm{K}}}}} \right.} {{\rm{kg}} \cdot {\rm{K}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free