Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Why is it easier to climb a mountain via a zigzag trail rather than to climb straight up?

Short Answer

Expert verified

It is easier to climb a mountain through a zigzag trail because less power is required in a zigzag path than a straight-up path.

Step by step solution

01

Work done by the climber

The work done by a body is equal to the correlation between the amount of force applied by the body and the distance covered by the body.

02

Comparison of paths to climb the mountain

As a person climbs straight up a mountain, the force required is large, and the distance covered is small. Also, the power needed while going straight up in a mountain is higher as it will take less time to cover the distance, and power is inversely proportional to time.

When moving in a zigzag trail, the person will use small force as a component of weight will be along the zigzag path. The power is also less in a zigzag motion because the time taken will be more. Therefore, in the zigzag trail, the climbing seems easier as compared to climb straight.

Thus, the zigzag trail is easier.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(I)A \(12\;{\rm{cm}}\) radius air duct is used to replenish the air of a room \(8.2\;{\rm{m}} \times 5.0\;{\rm{m}} \times 3.5\;{\rm{m}}\) every \(12\;{\rm{min}}\). How fast does the air flow in the duct?

In Fig. 6-31, water balloons are tossed from the roof of a building, all with the same speed but with different launch angles. Which one has the highest speed when it hits the ground? Ignore air resistance. Explain your answer.

Fig. 6-31 Problem 12

An oxygen atom at a particular site within a DNA molecule can be made to execute simple harmonic motion when illuminated by infrared light. The oxygen atom is bound with a spring-like chemical bond to a phosphorus atom, which is rigidly attached to the DNA backbone. The oscillation of the oxygen atom occurs with frequency \(f = 3.7 \times {10^{13}}\;{\rm{Hz}}\). If the oxygen atom at this site is chemically replaced with a sulfur atom, the spring constant of the bond is unchanged (sulfur is just below oxygen in the Periodic Table). Predict the frequency after the sulfur substitution.

A 52-kg person riding a bike puts all her weight on each pedal when climbing a hill. The pedals rotate in a circle of radius 17 cm. (a) What is the maximum torque she exerts? (b) How could she exert more torque?

The space shuttle launches an 850-kg satellite by ejecting it from the cargo bay. The ejection mechanism is activated and is in contact with the satellite for 4.8 s to give it a velocity of\(0.30\;{\rm{m/s}}\)in the x direction relative to the shuttle. The mass of the shuttle is 92,000 kg. (a) Determine the component of velocity\({v_{\rm{f}}}\)of the shuttle in the minus x direction resulting from the ejection. (b) Find the average force that the shuttle exerts on the satellite during the ejection.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free