Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Describe the energy transformations that take place when a skier starts skiing down a hill, but after a time is brought to rest by striking a snowdrift.

Short Answer

Expert verified

The obtained result is that the gravitational potential energy will be transformed into kinetic energy. When the skier strikes the snowdrift, frictional force does negative work to bring him into rest.

Step by step solution

01

Transformation of energy

In this problem, the skier will have gravitational potential energy at the top of the hill.

Also, if the skier comes down the hill, kinetic energy will be obtained.

If the friction between the skier’s skis and the snow is ignored, then the skier’s gravitational potential energy is transformed into kinetic energy as he glides down the hill.

At the bottom of the hill, the kinetic energy will take the maximum value, and potential energy will be zero as total energy remains conserved.

02

Kinetic and gravitational potential energy

The skier will gain speed as elevation is not there in the hill. When the skier strikes the snowdrift, the skier’s kinetic energy will be converted into snow’s kinetic energy as well as thermal energy. The frictional force will do negative work, and it will gradually reduce the kinetic energy of the skier. He will come to rest after some time.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(III) A cyclist intends to cycle up a 7.50° hill whose vertical height is 125 m. The pedals turn in a circle of diameter 36.0 cm. Assuming the mass of bicycle plus person is 75.0 kg, (a) calculate how much work must be done against gravity. (b) If each complete revolution of the pedals moves the bike 5.10 m along its path, calculate the average force that must be exerted on the pedals tangent to their circular path. Neglect work done by friction and other losses.

(III) An engineer is designing a spring to be placed at the bottom of an elevator shaft. If the elevator cable breaks when the elevator is at a height h above the top of the spring, calculate the value that the spring constant k should have so that passengers undergo an acceleration of no more than 5.0 g when brought to rest. Let M be the total mass of the elevator and passengers.

(I) Two railroad cars, each of mass 66,000 kg, are traveling 85 km/h toward each other. They collide head-on and come to rest. How much thermal energy is produced in this collision?

A \(0.650\;{\rm{kg}}\) mass oscillates according to the equation \(x = 0.25\sin \left( {4.70\;{\rm{t}}} \right)\) where \({\rm{x}}\) is in meters and \({\rm{t}}\) is in seconds. Determine (a) the amplitude, (b) the frequency, (c) the period, (d) the total energy, and (e) the kinetic energy and potential energy when \({\rm{x}}\)is15 cm

Some electric power companies use water to store energy. Water is pumped from a low reservoir to a high reservoir. To store the energy produced in 1.0 hour by a 180-MW electric power plant, how many cubic meters of water will have to be pumped from the lower to the upper reservoir? Assume the upper reservoir is an average of 380 m above the lower one. Water has a mass of \(1.00 \times {10^3}\;{\rm{kg}}\) for every \(1.0\;{{\rm{m}}^3}\).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free