Draw a free body diagram.

Here,\({F_{\rm{N}}}\)is the normal force and\({F_{\rm{P}}}\)is the applied force.
Apply the equilibrium condition along the horizontal direction.
\(\begin{aligned}{}\sum {F_{\rm{x}}} = 0\\{F_{\rm{P}}}\cos \left( {\phi + \theta } \right) - mg\sin \theta = 0\\{F_{\rm{P}}}\cos \left( {\phi + \theta } \right) = mg\sin \theta \\{F_{\rm{P}}} = \frac{{mg\sin \theta }}{{\cos \left( {\phi + \theta } \right)}}\end{aligned}\)
Substitute the values in the above equation.
\(\begin{aligned}{}{F_{\rm{P}}} = \frac{{\left( {16\;{\rm{kg}}} \right)\left( {9.8\;{{\rm{m}} \mathord {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\sin \left( {12^\circ } \right)}}{{\cos \left( {17^\circ + 12^\circ } \right)}}\\{F_{\rm{P}}} = 37.27\;{\rm{N}}\end{aligned}\)
The work done by the force\({F_{\rm{P}}}\)can be calculated as:
\(\begin{aligned}{}{W_{{{\rm{F}}_{\rm{P}}}}} = {F_{\rm{P}}}d\cos \left( {\phi + \theta } \right)\\{W_{{{\rm{F}}_{\rm{P}}}}} = \left( {37.27\;{\rm{N}}} \right)\left( {7.5\;{\rm{m}}} \right)\cos \left( {17^\circ + 12^\circ } \right)\\{W_{{{\rm{F}}_{\rm{P}}}}} = 244.47{\rm{ J}}\\{W_{{{\rm{F}}_{\rm{P}}}}} \approx 244\;{\rm{J}}\end{aligned}\)
Thus, the work done by the force \({F_{\rm{P}}}\)is \(244\;{\rm{J}}\).