Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20


(I) Calculate the forces\({F_{\rm{A}}}\)and\({F_{\rm{B}}}\)that the supports exert on the diving board of Fig. 9–49 when a 52-kg person stands at its tip. (a) Ignore the weight of the board. (b) Take into account the board’s mass of 28 kg. Assume the board’s CG is at its center.



Short Answer

Expert verified

The result of the forces acting on the diver board is

(a)\({F_{\rm{A}}} = 1530.8\;{\rm{N}}\)and\({F_{\rm{B}}} = 2040.4\;{\rm{N}}\)

(b) \({F_{\rm{A}}} = 1803.2\;{\rm{N}}\) and \({F_{\rm{B}}} = 2587.2\;{\rm{N}}\)

Step by step solution

01

Given Data

The force on A is\({F_{\rm{A}}}\).

The force on B is\({F_{\rm{B}}}\).

The mass of the person is\(m = 52\;{\rm{kg}}\).

The mass of the board is \({m_{\rm{b}}} = 28\;{\rm{kg}}\).

02

Understand the torque acting on the diver

In this problem, the net torque is equivalent to zero because the board is in equilibrium position. To calculate the net torque at the left side of the board, use the counter-clockwise direction as positive.

03

Draw the free-body diagram and calculate the forces on point B

The following is the free-body diagram.

The relation for net torque is written below:

\(\begin{array}{c}\sum \tau = 0\\\left[ {\left( {{F_{\rm{B}}} \times 1\;{\rm{m}}} \right) - \left( {mg \times 4\;{\rm{m}}} \right)} \right] = 0\\{F_{\rm{B}}} = 4mg\end{array}\)

Here,\(g\)is the gravitational acceleration.

Put the values in the above relation.

\(\begin{array}{c}{F_{\rm{B}}} = \left( {4\;{\rm{m}}} \right)\left( {52\;{\rm{kg}}} \right)\left( {9.8\;{\rm{m/}}{{\rm{s}}^2}} \right)\\{F_{\rm{B}}} = 2040.4\;{\rm{N}}\end{array}\)

04

Calculate the forces on point A

The relation for the forces in the y-direction is given below:

\(\begin{array}{c}\sum {F_{\rm{y}}} = 0\\{F_{\rm{B}}} - {F_{\rm{A}}} - mg = 0\end{array}\)

Here,\(g\)is the gravitational acceleration.

Put the values in the above relation.

\(\begin{array}{c}\left[ {\left( {2040.4\;{\rm{N}}} \right) - \left( {{F_{\rm{A}}}} \right) - \left( {52\;{\rm{kg}}} \right)\left( {9.8\;{\rm{m/}}{{\rm{s}}^2}} \right)} \right] = 0\\{F_{\rm{A}}} = 1530.8\;{\rm{N}}\end{array}\)

Thus, \({F_{\rm{A}}} = 1530.8\;{\rm{N}}\) and \({F_{\rm{B}}} = 2040.4\;{\rm{N}}\) are the force exerting on points A and B.

05

Calculate the forces on point B

The relation for net torque is given below:

\(\begin{array}{c}\sum \tau = 0\\\left[ {\left( {{F_{\rm{B}}} \times 1\;{\rm{m}}} \right) - \left( {{m_{\rm{b}}}g \times 2\;{\rm{m}}} \right) - \left( {mg \times 4\;{\rm{m}}} \right)} \right] = 0\end{array}\)

Here,\(g\)is the gravitational acceleration.

Put the values in the above relation.

\(\begin{array}{c}\left[ {\left( {{F_{\rm{B}}} \times 1\;{\rm{m}}} \right) - \left( {28\;{\rm{kg}} \times 9.8\;{\rm{m/}}{{\rm{s}}^2} \times 2\;{\rm{m}}} \right) - \left( {52\;{\rm{kg}} \times 9.8\;{\rm{m/}}{{\rm{s}}^2} \times 4\;{\rm{m}}} \right)} \right] = 0\\{F_{\rm{B}}} = 2587.2\;{\rm{N}}\end{array}\)

06

Calculate the forces on point A

The relation for the forces in the y-direction is given below:

\(\begin{array}{c}\sum {F_{\rm{y}}} = 0\\{F_{\rm{B}}} - {F_{\rm{A}}} - mg - {m_b}g = 0\end{array}\)

Put the values in the above relation.

\(\begin{array}{c}\left[ {\left( {2587.2\;{\rm{N}}} \right) - \left( {{F_{\rm{A}}}} \right) - \left( {52\;{\rm{kg}}} \right)\left( {9.8\;{\rm{m/}}{{\rm{s}}^2}} \right) - \left( {28\;{\rm{kg}}} \right)\left( {9.8\;{\rm{m/}}{{\rm{s}}^2}} \right)} \right] = 0\\{F_{\rm{A}}} = 1803.2\;{\rm{N}}\end{array}\)

Thus, \({F_{\rm{A}}} = 1803.2\;{\rm{N}}\) and \({F_{\rm{B}}} = 2587.2\;{\rm{N}}\) are the force exerting on points A and B.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free