From the conservation of energy, the energies can be expressed as:
\(G.P.E = K.E\)
\(mg\frac{l}{2} = \frac{1}{2}I{\omega ^2}\) … (i)
Here, G.P.E is the gravitational potential energy, K.Eis the rotational kinetic energy, I is the moment of inertia, and\(\omega \)is the angular speed of the long pole. The center of mass of the pole is in the middle of the pole. So, the length in the gravitational potential energy becomes half the total length of the pole.
The moment of inertia of the long pole (rod shaped) is expressed as:
\(I = \frac{{m{l^2}}}{3}\)
The angular velocity of the pole can be expressed as:
\(\omega = \frac{v}{l}\)
Substitute the values in equation (i).
\(\begin{aligned}{c}mg\frac{l}{2} &= \frac{1}{2} \times \frac{{m{l^2}}}{3} \times {\left( {\frac{v}{l}} \right)^2}\\gl &= \frac{1}{3} \times {v^2}\\{v^2} &= 3gl\\v &= \sqrt {3gl} \end{aligned}\)
Substitute the values in the above equation.
\(\begin{aligned}{c}v &= \sqrt {3 \times 9.81{\rm{ m/}}{{\rm{s}}^2} \times 1.80{\rm{ m}}} \\ &= \sqrt {52.974} {\rm{ m/s}}\\ &= 7.28{\rm{ m/s}}\end{aligned}\)
Thus, the speed of the upper end of the pole just before it hits the ground is 7.28 m/s.