The power radiated by the tungsten sphere can be calculated by using the following equation:
\(\frac{Q}{t} = {\rm{\varepsilon }}\sigma A{T^4}\)
Here, \(\sigma \) is the Stefan-Boltzmann constant, and its value is \(5.67 \times {10^{ - 8}}\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{{\rm{m}}^{\rm{2}}} \cdot {{\rm{K}}^{\rm{4}}}}}} \right.\\} {{{\rm{m}}^{\rm{2}}} \cdot {{\rm{K}}^{\rm{4}}}}}\).
Substitute the values in the above equation.
\(\begin{array}{c}\frac{Q}{t} = \left( {0.35} \right)\left( {5.67 \times {{10}{ - 8}}\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{{\rm{m}}{\rm{2}}} \cdot {{\rm{K}}{\rm{4}}}}}} \right.\\} {{{\rm{m}}{\rm{2}}} \cdot {{\rm{K}}{\rm{4}}}}}} \right)\left[ {4\pi {{\left( {0.19\;{\rm{m}}} \right)}2}} \right]{\left[ {\left( {25{\rm{\circ C}} + 273} \right)\;{\rm{K}}} \right]4}\\ = 70.9\;{\rm{W}}\\ \approx 71\;{\rm{W}}\end{array}\)
Thus, the power radiated by the tungsten sphere is \(71\;{\rm{W}}\).
Thus, the power radiated by the tungsten sphere is \(71\;{\rm{W}}\).