The kinetic energy of the car is equal to the spring potential energy. The energy can be expressed as:
\(\begin{array}{c}P.{E_i} + K.{E_i} = P.{E_f} + K.{E_f}\\0 + \frac{1}{2}m{v^2} = \frac{1}{2}k{x^2} + 0\\m{v^2} = k{x^2}\\k = \frac{{m{v^2}}}{{{x^2}}}\end{array}\)
Here,\(v\)is the velocity of the car. The initial gravitational potential energy\(P.{E_i}\)is equal to zero because the spring is not compressed, and the car and spring both lie at the same level.
\(K.{E_i}\)is the initial kinetic energy,\(P.{E_f}\)is the elastic potential energy of the spring, and\(K.{E_f}\)is the final kinetic energy, which is equal to zero after it strikes.
Substitute the values in the above expression.
\(\begin{array}{c}k = \frac{{1200{\rm{ kg}} \times {{\left( {23.61{\rm{ m/s}}} \right)}^2}}}{{{{\left( {2.2{\rm{ m}}} \right)}^2}}} \times \left( {\frac{{1{\rm{ N/m}}}}{{1{\rm{ kg/}}{{\rm{s}}^2}}}} \right)\\ = 1.38 \times {10^5}{\rm{ N/m}}\end{array}\)
Thus, the spring’s stiffness constant is \(1.38 \times {10^5}{\rm{ N/m}}\).