The heat conduction rate along the rod can be calculated as:
\(\frac{Q}{t} = kA\frac{{{T_1} - {T_2}}}{l}\)
Here, k is the thermal conductivity, A is the cross-section area, and l is the length,
Substitute the values in the above expression.
\(\begin{array}{c}\frac{Q}{t} = \left( {380\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {{\rm{s}} \cdot {\rm{m}} \cdot {\rm{\circ C}}}}} \right.\\} {{\rm{s}} \cdot {\rm{m}} \cdot {\rm{\circ C}}}}} \right)\left( {3.14 \times {{10}{ - 4}}\;{{\rm{m}}{\rm{2}}}} \right)\frac{{\left[ {\left( {460{\rm{\circ C}}} \right) - \left( {22{\rm{\circ C}}} \right)} \right]}}{{\left[ {\left( {56\;{\rm{cm}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}{{\rm{ - 2}}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{cm}}}}} \right)} \right]}}\\ = 93.3\;{\rm{W}}\\ \approx {\rm{93}}\;{\rm{W}}\end{array}\)
Thus, the heat conduction rate along the rod is \({\rm{93}}\;{\rm{W}}\).