From table 15-2:
The metabolic rate for sitting upright is\(115\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {\rm{s}}}} \right.} {\rm{s}}}\).
The metabolic rate for running \(15\;{{{\rm{km}}} \mathord{\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.} {\rm{h}}}\) is \(1150\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {\rm{s}}}} \right.} {\rm{s}}}\).
In the example problem, the result indicate the total energy transformed in 24 hours is\(1.15 \times {10^7}\;{\rm{J}}\).
Instead of working 11.0 h, she took noon break and ran for 1.0 hour. Therefore, subtract energy for one hour of sitting upright and add energy for 1 hour of running at\(15\;{{{\rm{km}}} \mathord{\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.} {\rm{h}}}\).
Therefore, the total energy transformed by the person can be calculated as:
\(\begin{aligned}{c}E &= \left( {1.15 \times {{10}^7}\;{\rm{J}}} \right) + \left( { - \left( {115\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {\rm{s}}}} \right.} {\rm{s}}}} \right) + \left( {1150\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {\rm{s}}}} \right.} {\rm{s}}}} \right)} \right)\left( {\frac{{3600\;{\rm{s}}}}{{1\;{\rm{h}}}}} \right)\\E &= 1.52 \times {10^7}\;{\rm{J}}\end{aligned}\)
Thus, the total energy transformed in this process is \(1.52 \times {10^7}\;{\rm{J}}\).