Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: An ideal heat pump is used to maintain the inside temperature of a house at \({T_{{\rm{in}}}} = 22{\rm{^\circ C}}\) when the outside temperature is \({T_{{\rm{out}}}}\). Assume that when it is operating, the heat pump does work at a rate of 1500 W. Also assume that the house loses heat via conduction through its walls and other surfaces at a rate given by \(\left( {650\;{{\rm{W}} \mathord{\left/

{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)\). (a) For what outside temperature would the heat pump have to operate all the time in order to maintain the house at an inside temperature of 22°C? (b) If the outside temperature is 8°C, what percentage of the time does the heat pump have to operate in order to maintain the house at an inside temperature of 22°C?

Short Answer

Expert verified

(a) The required outside temperature to maintain the house at an inside temperature of 22°C is \( - 4.0{\rm{^\circ C}}\).

(b) The pump has to work for \(29\% \) of the total time.

Step by step solution

01

Meaning of heat pump

A heat pump is a machine that moves heat energy from a lower-temperature reservoir to a higher-temperature reservoir by doing work.

02

Given information

The inside temperature of the house is \({T_{{\rm{in}}}} = 22{\rm{^\circ C}}\).

The outside temperature of the house is \({T_{{\rm{out}}}}\).

The rate of work done or power is \(P = 1500\;{\rm{W}}\).

The heat rejection rate from the house is \({Q_{\rm{R}}} = \left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)\).

03

Evaluation of the required outside temperature 

(a)

The expression for the power is

\(P = \frac{W}{{\Delta t}}\).

Here, \(W\) is the work done and \(\Delta t\) is the time.

The expression for the rate of heat input to the house is

\({Q_{\rm{S}}} = \frac{{{Q_{\rm{L}}} + W}}{{\Delta t}}\).

Here, \({Q_{\rm{L}}}\) is the heat rejected from the house.

From the law of conservation of energy, the rate of energy supplied is equal to the rate of energy lost for a given interval of time.

\(\begin{aligned}{c}{Q_{\rm{S}}} &= {Q_{\rm{R}}}\\\frac{{{Q_{\rm{L}}} + W}}{{\Delta t}} &= \left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)\\{Q_{\rm{L}}} + W &= \left( {\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)} \right)\end{aligned}\)

The expression for the efficiency of the heat pump is

\(e = 1 - \frac{{{T_{{\rm{out}}}}}}{{{T_{{\rm{in}}}}}}\). … (i)

The expression for the efficiency of the heat pump in terms of work done and heat rejected is

\(e = \frac{W}{{{Q_{\rm{L}}} + W}}\). … (ii)

Equate equations (i) and (ii).

\(\begin{aligned}{c}\frac{W}{{{Q_{\rm{L}}} + W}} &= 1 - \frac{{{T_{{\rm{out}}}}}}{{{T_{{\rm{in}}}}}}\\{Q_{\rm{L}}} + W &= \left( {\frac{{{T_{{\rm{in}}}}}}{{{T_{{\rm{in}}}} - {T_{{\rm{out}}}}}}} \right)W\\\left( {\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)} \right)\Delta t &= \left( {\frac{{{T_{{\rm{in}}}}}}{{{T_{{\rm{in}}}} - {T_{{\rm{out}}}}}}} \right)W\\\left( {\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)} \right) &= \frac{W}{{\Delta t}}\left( {\frac{{{T_{{\rm{in}}}}}}{{{T_{{\rm{in}}}} - {T_{{\rm{out}}}}}}} \right)\end{aligned}\)

Solve further as shown below:

\(\begin{aligned}{c}{\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)^2} &= \frac{{W{T_{{\rm{in}}}}}}{{\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\Delta t}}\\\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right) &= \sqrt {\frac{{W{T_{{\rm{in}}}}}}{{\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\Delta t}}} \\{T_{{\rm{out}}}} &= {T_{{\rm{in}}}} - \sqrt {\frac{{W{T_{{\rm{in}}}}}}{{\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\Delta t}}} \end{aligned}\)

Substitute the values in the above equation.

\(\begin{aligned}{c}{T_{{\rm{out}}}} &= \left( {\left( {22{\rm{^\circ C}} + 273} \right)\;{\rm{K}}} \right) - \sqrt {\frac{{\left( {1500\;{\rm{W}}} \right)\left( {\left( {22{\rm{^\circ C}} + 273} \right)\;{\rm{K}}} \right)}}{{\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)}}} \\{T_{{\rm{out}}}} &= \left( {269\;{\rm{K - 273}}} \right){\rm{^\circ C}}\\{T_{{\rm{out}}}} &= - 4.0{\rm{^\circ C}}\end{aligned}\)

Thus, the required outside temperature is \( - 4.0{\rm{^\circ C}}\).

04

Evaluation of the percentage of time that the pump has to work

(b)

In this part, it is given that the outside temperature is \({T_{{\rm{out}}}} = 8{\rm{^\circ C}}\).

The rate of heat rejection is calculated below:

\(\begin{aligned}{c}{Q_{\rm{R}}} &= \left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)\\{Q_{\rm{R}}} &= \left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {22{\rm{^\circ C}} - 8{\rm{^\circ C}}} \right)\\{Q_{\rm{R}}} &= 9100\;{\rm{W}}\end{aligned}\)

The rate of work done by the pump is calculated below:

\(\begin{aligned}{c}{\left( {\frac{W}{{\Delta t}}} \right)_{\rm{P}}} &= {Q_R}\left( {\frac{{{T_{{\rm{in}}}} - {T_{{\rm{out}}}}}}{{{T_{{\rm{in}}}}}}} \right)\\{\left( {\frac{W}{{\Delta t}}} \right)_{\rm{P}}} &= \left( {9100\;{\rm{W}}} \right)\left( {\frac{{\left( {\left( {22{\rm{^\circ C}} + 273} \right)\;{\rm{K}}} \right) - \left( {\left( {{\rm{8^\circ C}} + 273} \right)\;{\rm{K}}} \right)}}{{\left( {\left( {22{\rm{^\circ C}} + 273} \right)\;{\rm{K}}} \right)}}} \right)\\{\left( {\frac{W}{{\Delta t}}} \right)_{\rm{P}}} &= 432\;{\rm{W}}\end{aligned}\)

The percentage of time that the pump has to work is calculated below:

\(\begin{aligned}{c}t\left( \% \right) &= \frac{{{{\left( {\frac{W}{{\Delta t}}} \right)}_{\rm{P}}}}}{P}\\t\left( \% \right) &= \left( {\frac{{432\;{\rm{W}}}}{{1500\;{\rm{W}}}}} \right) \times 100\% \\t\left( \% \right) &= 29\% \end{aligned}\)

Thus, the pump has to work for \(29\% \) of the total time.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free