(a)
The expression for the power is
\(P = \frac{W}{{\Delta t}}\).
Here, \(W\) is the work done and \(\Delta t\) is the time.
The expression for the rate of heat input to the house is
\({Q_{\rm{S}}} = \frac{{{Q_{\rm{L}}} + W}}{{\Delta t}}\).
Here, \({Q_{\rm{L}}}\) is the heat rejected from the house.
From the law of conservation of energy, the rate of energy supplied is equal to the rate of energy lost for a given interval of time.
\(\begin{aligned}{c}{Q_{\rm{S}}} &= {Q_{\rm{R}}}\\\frac{{{Q_{\rm{L}}} + W}}{{\Delta t}} &= \left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)\\{Q_{\rm{L}}} + W &= \left( {\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)} \right)\end{aligned}\)
The expression for the efficiency of the heat pump is
\(e = 1 - \frac{{{T_{{\rm{out}}}}}}{{{T_{{\rm{in}}}}}}\). … (i)
The expression for the efficiency of the heat pump in terms of work done and heat rejected is
\(e = \frac{W}{{{Q_{\rm{L}}} + W}}\). … (ii)
Equate equations (i) and (ii).
\(\begin{aligned}{c}\frac{W}{{{Q_{\rm{L}}} + W}} &= 1 - \frac{{{T_{{\rm{out}}}}}}{{{T_{{\rm{in}}}}}}\\{Q_{\rm{L}}} + W &= \left( {\frac{{{T_{{\rm{in}}}}}}{{{T_{{\rm{in}}}} - {T_{{\rm{out}}}}}}} \right)W\\\left( {\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)} \right)\Delta t &= \left( {\frac{{{T_{{\rm{in}}}}}}{{{T_{{\rm{in}}}} - {T_{{\rm{out}}}}}}} \right)W\\\left( {\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)} \right) &= \frac{W}{{\Delta t}}\left( {\frac{{{T_{{\rm{in}}}}}}{{{T_{{\rm{in}}}} - {T_{{\rm{out}}}}}}} \right)\end{aligned}\)
Solve further as shown below:
\(\begin{aligned}{c}{\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)^2} &= \frac{{W{T_{{\rm{in}}}}}}{{\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\Delta t}}\\\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right) &= \sqrt {\frac{{W{T_{{\rm{in}}}}}}{{\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\Delta t}}} \\{T_{{\rm{out}}}} &= {T_{{\rm{in}}}} - \sqrt {\frac{{W{T_{{\rm{in}}}}}}{{\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\Delta t}}} \end{aligned}\)
Substitute the values in the above equation.
\(\begin{aligned}{c}{T_{{\rm{out}}}} &= \left( {\left( {22{\rm{^\circ C}} + 273} \right)\;{\rm{K}}} \right) - \sqrt {\frac{{\left( {1500\;{\rm{W}}} \right)\left( {\left( {22{\rm{^\circ C}} + 273} \right)\;{\rm{K}}} \right)}}{{\left( {650\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)}}} \\{T_{{\rm{out}}}} &= \left( {269\;{\rm{K - 273}}} \right){\rm{^\circ C}}\\{T_{{\rm{out}}}} &= - 4.0{\rm{^\circ C}}\end{aligned}\)
Thus, the required outside temperature is \( - 4.0{\rm{^\circ C}}\).