Chapter 15: Q18P (page 412)
Question:(I) A heat engine exhausts 8200 J of heat while performing 2600 J of useful work. What is the efficiency of this engine?
Short Answer
The efficiency of the heat engine is \(24.07\% \).
Chapter 15: Q18P (page 412)
Question:(I) A heat engine exhausts 8200 J of heat while performing 2600 J of useful work. What is the efficiency of this engine?
The efficiency of the heat engine is \(24.07\% \).
All the tools & learning materials you need for study success - in one app.
Get started for free(II) A restaurant refrigerator has a coefficient of performance of 4.6. If the temperature in the kitchen outside the refrigerator is 32°C, what is the lowest temperature that could be obtained inside the refrigerator if it were ideal?
Question: (II) (a) What is the coefficient of performance of an ideal heat pump that extracts heat from 6°C air outside and deposits heat inside a house at 24°C? (b) If this heat pump operates on 1200 W of electrical power, what is the maximum heat it can deliver into the house each hour? See Problem 35.
(I) An ideal gas expands isothermally, performing\({\bf{4}}{\bf{.30 \times 1}}{{\bf{0}}^{\bf{3}}}\;{\bf{J}}\) of work in the process. Calculate (a) the change in internal energy of the gas, and (b) the heat absorbed during this expansion.
Question: (III) The PV diagram in Fig. 15–23 shows two possible states of a system containing 1.75 moles of a monatomic ideal gas. \(\left( {{P_1} = {P_2} = {\bf{425}}\;{{\bf{N}} \mathord{\left/{\vphantom {{\bf{N}} {{{\bf{m}}^{\bf{2}}}}}} \right.} {{{\bf{m}}^{\bf{2}}}}},\;{V_1} = {\bf{2}}{\bf{.00}}\;{{\bf{m}}^{\bf{3}}},\;{V_2} = {\bf{8}}{\bf{.00}}\;{{\bf{m}}^{\bf{3}}}.} \right)\) (a) Draw the process which depicts an isobaric expansion from state 1 to state 2, and label this process A. (b) Find the work done by the gas and the change in internal energy of the gas in process A. (c) Draw the two-step process which depicts an isothermal expansion from state 1 to the volume \({V_2}\), followed by an isovolumetric increase in temperature to state 2, and label this process B. (d) Find the change in internal energy of the gas for the two-step process B.
What do you think about this solution?
We value your feedback to improve our textbook solutions.