Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

On a very hot day, could you cool your kitchen by leaving the refrigerator door open?

(a) Yes, but it would be very expensive.

(b) Yes, but only if the humidity is below 50%.

(c) No, the refrigerator would exhaust the same amount of heat into the room as it takes out of the room.

(d) No, the heat exhausted by the refrigerator into the room is more than the heat the refrigerator takes out of the room.

Short Answer

Expert verified

The correct option is (d).

Step by step solution

01

Principle of refrigerator

A refrigerator is a device to cool a lower temperature region by extracting heat from that region.

By doing work, heat is taken out from a low-temperature region (such as inside a refrigerator), and a greater amount of heat is exhausted to a high-temperature region (the room).

02

Explanation

On a very hot day, if you open your refrigerator door, it will not be possible to cool the whole kitchen because the heat exhausted by the refrigerator into the room is more than the heat the refrigerator takes out of the room.

Hence, option (d) is correct.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A particular car does work at the rate of about\({\bf{7}}{\bf{.0}}\;{\bf{kJ/s}}\)when traveling at a steady\({\bf{21}}{\bf{.8}}\;{\bf{m/s}}\)along a level road. This is the work done against friction. The car can travel 17 km on 1.0 L of gasoline at this speed (about 40 mi/gal). What is the minimum value for\({{\bf{T}}_{\bf{H}}}\)if\({{\bf{T}}_{\bf{L}}}\)is 25ยฐC? The energy available from 1.0 L of gas is\({\bf{3}}{\bf{.2 \times 1}}{{\bf{0}}{\bf{7}}}\;{\bf{J}}\).

(II) An inventor claims to have built an engine that produces 2.00 MW of usable work while taking in 3.00 MW of thermal energy at 425 K, and rejecting 1.00 MW of thermal energy at 215 K. Is there anything fishy about his claim? Explain.

Question: (I) Calculate the average metabolic rate of a 65-kg person who sleeps 8.0 h, sits at a desk 6.0 h, engages in light activity 6.0 h, watches TV 2.0 h, plays tennis 1.5 h, and runs 0.50 h daily.

Question: Metabolizing 1.0 kg of fat results in about \({\bf{3}}{\bf{.7 \times 1}}{{\bf{0}}^{\bf{7}}}\;{\bf{J}}\) of internal energy in the body. (a) In one day, how much fat does the body burn to maintain the body temperature of a person staying in bed and metabolizing at an average rate of 95 W? (b) How long would it take to burn 1.0 kg of fat this way assuming there is no food intake?

(II) A restaurant refrigerator has a coefficient of performance of 4.6. If the temperature in the kitchen outside the refrigerator is 32ยฐC, what is the lowest temperature that could be obtained inside the refrigerator if it were ideal?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free