Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:You are asked to test a machine that the inventor calls an “in-room air conditioner”: a big box, standing in the middle of the room, with a cable that plugs into a power outlet. When the machine is switched on, you feel a stream of cold air coming out of it. How do you know that this machine cannot cool the room?

Short Answer

Expert verified

The machine cannot cool the room because the heat addition will make the room warmer

Step by step solution

01

Understanding air conditioners 

In this problem, the inventor’s device called “in room air conditioner” is an air-conditioner type heat engine, andit will remove heat from the room.

02

Explanationfor the inventor’smachine about cooling the room                              

The machine made by the inventor is named an “in-room air conditioner.” It is a huge box placed in the middle of the room. It is connected to the power outlet through a cable.

By the law of thermodynamics, it can be said that there should be a greater temperature exhaust heat, which should be larger than the removed heat. In this condition, the addition of heat to the machine will make the room warmer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: An ideal heat pump is used to maintain the inside temperature of a house at \({T_{{\rm{in}}}} = 22{\rm{^\circ C}}\) when the outside temperature is \({T_{{\rm{out}}}}\). Assume that when it is operating, the heat pump does work at a rate of 1500 W. Also assume that the house loses heat via conduction through its walls and other surfaces at a rate given by \(\left( {650\;{{\rm{W}} \mathord{\left/

{\vphantom {{\rm{W}} {{\rm{^\circ C}}}}} \right.} {{\rm{^\circ C}}}}} \right)\left( {{T_{{\rm{in}}}} - {T_{{\rm{out}}}}} \right)\). (a) For what outside temperature would the heat pump have to operate all the time in order to maintain the house at an inside temperature of 22°C? (b) If the outside temperature is 8°C, what percentage of the time does the heat pump have to operate in order to maintain the house at an inside temperature of 22°C?

The oceans contain a tremendous amount of thermal (internal) energy. Why, in general, is it not possible to put this energy to useful work?

Question: Give three examples, other than those mentioned in this Chapter, of naturally occurring processes in which order goes to disorder. Discuss the observability of the reverse process.

Question: (II) An ideal gas expands at a constant total pressure of 3.0 atm from 410 mL to 690 mL. Heat then flows out of the gas at constant volume, and the pressure and temperature are allowed to drop until the temperature reaches its original value. Calculate (a) the total work done by the gas in the process, and (b) the total heat flow into the gas.

Question: (II) Use the conservation of energy to explain why the temperature of a well-insulated gas increases when it is compressed—say, by pushing down on a piston—whereas the temperature decreases when the gas expands. Show your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free