If\({V_0}\)is the original volume of interior space of bathysphere, and\(\Delta V\)is the change in volume at a depth of 2000 m in the sea, the percentage chain in the volume of the iron bathysphere is
\(\frac{{\Delta V}}{{{V_0}}} \times 100\).
The change in volumeof the interior space of an iron bathysphere can be written as follows:
\(\begin{array}{c}\Delta V = - \frac{1}{B}{V_0}\Delta P\\\frac{{\Delta V}}{{{V_0}}} = - \frac{1}{B}\Delta P\end{array}\)
Thus, the percentage change in volume is as follows:
\(\begin{array}{c}\frac{{\Delta V}}{{{V_0}}} \times 100 = - \frac{1}{B}\Delta P \times 100\\ = - \frac{{199{P_{\rm{a}}}}}{B} \times 100\\ = - \frac{{199 \times \left( {1.0 \times {{10}^5}\;{\rm{N/}}{{\rm{m}}^{\rm{2}}}} \right)}}{{90 \times {{10}^9}\;{\rm{N/}}{{\rm{m}}^{\rm{2}}}}} \times 100\\ = - 2.21 \times {10^{ - 2}}\;\% \\ \approx - 2 \times {10^{ - 2}}\;\% \end{array}\)
Here, the negative sign shows that the volume of the bathysphere has decreased.
Thus, the volume of interior space of an iron bathysphere decreases by \(2 \times {10^{ - 2}}\;\% \).