At equilibrium, the net forces acting in the vertical direction should be equal to zero.
\(\begin{array}{c}{\sum F _y} = 0\\{F_{NG}} - Mg = 0\\{F_{NG}} = Mg\end{array}\)
At equilibrium, the net forces acting in the horizontal direction should also be equal to zero.
\(\begin{array}{c}{\sum F _x} = 0\\ - {F_{NW}} + {F_f} = 0\\{F_{NW}} = {\mu _s}{F_{NG}}\\{F_{NW}} = {\mu _s}Mg\end{array}\)
At equilibrium, the net torques acting about point A should be zero. Therefore, the torques equation can be expressed as:
\(\begin{array}{c}\sum {{T_{net}}} = 0\\ - AB \times {F_{{\rm{NW}}}}\sin \theta + AC \times Mg\cos \theta = 0\\ - l \times {\mu _s}Mg\sin \theta + \frac{l}{2} \times Mg\cos \theta = 0\\l \times {\mu _s}Mg\sin \theta = \frac{l}{2} \times Mg\cos \theta \end{array}\)
This can be further solved as:
\(\begin{array}{c}2{\mu _s}Mg\sin \theta = Mg\cos \theta \\2{\mu _s}\sin \theta = \cos \theta \\\tan \theta = \frac{1}{{2{\mu _s}}}\\\theta = {\tan ^{ - 1}}\left( {\frac{1}{{2{\mu _s}}}} \right)\end{array}\)
Thus, the formula for the minimum angle at which the ladder will not slip is \(\left\{ {{{\tan }^{ - 1}}\left( {\frac{1}{{2{\mu _s}}}} \right)} \right\}\).