The following is the free-body diagram of the tree.

The relation for the net torque is shown below.
\(\begin{array}{c}\sum \tau = 0\\\left( {mg \times {x_2}} \right) - \left( {Mg \times {x_1}} \right) = 0\end{array}\)
Here,\(g\)is the gravitational acceleration, and\({x_1}\)is the distance of the center of gravity with the value\({\rm{CG}} = 35\;{\rm{cm}}\).
Put the values in the above relation.
\(\begin{array}{c}\left( {m\left( {9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right) \times \left( {35\;{\rm{cm}}} \right)} \right) - \left( {\left( {15\;{\rm{kg}}} \right)\left( {9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right) \times \left( {78\;{\rm{cm}}} \right)} \right) = 0\\m = 6.7\;{\rm{kg}}\end{array}\)
Thus, \(m = 6.7\;{\rm{kg}}\) is the mass required to suspend the leg.