Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Is the Young’s modulus for a bungee cord smaller or larger than that for an ordinary rope?

Short Answer

Expert verified

The Young’s modulus for a bungee cord is smaller than that of an ordinary rope.

Step by step solution

01

Understanding Young’s modulus

Young’s modulus is one of the essential properties of an element that estimates the stiffness and identifies the ductility or brittleness of the element.

02

Evaluating the change in Young’s modulus with ordinary rope and bungee cord

The relation of Young’s modulus is given by:

\(E = \left( {\frac{F}{A}} \right)\left( {\frac{L}{{\Delta L}}} \right)\)

Here, Fis the force, Ais the area, Lis the length of the cord, and\(\Delta L\)is the change in the length of the cord.

In the above relation, it is observed that Young’s modulus relies on the change in the length of the particular chord. This indicates that the value of Young’s modulus reduces with an increase in change in length.

The variation in the length of a bungee cord is much larger than an ordinary rope. So, Young’s modulus for a bungee cord will be smaller.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Parachutists whose chutes have failed to open have been known to survive if they land in deep snow. Assume that a 75-kg parachutist hits the ground with an area of impact of\(0.30\;{{\rm{m}}^2}\)at a velocity of\(55\;{\rm{m/s}}\)and that the ultimate strength of body tissue is\(5 \times {10^5}\;{\rm{N/}}{{\rm{m}}^2}\). Assume that the person is brought to rest in 1.0 m of snow. Show that the person may escape serious injury.

(II) If 25 kg is the maximum mass mthat a person can hold in a hand when the arm is positioned with a 105° angle at the elbow as shown in Fig. 9–74, what is the maximum force\({F_{{\bf{max}}}}\) that the biceps muscle exerts on the forearm? Assume the forearm and hand have a total mass of 2.0 kg with a CG that is 15 cm from the elbow, and that the biceps muscle attaches 5.0 cm from the elbow.

The roof over a \({\bf{9}}{\bf{.0}}\;{\bf{m \times 10}}{\bf{.0}}\;{\bf{m}}\) room in a school has a total mass of 13,600 kg. The roof is to be supported by vertical wooden (actually about \({\bf{4}}{\bf{.0}}\;{\bf{cm \times 9}}{\bf{.0}}\;{\bf{cm}}\)) equally spaced along the 10.0-m sides. How many supports are required on each side, and how far apart must they be? Consider only compression, and assume a safety factor of 12.

As you increase the force that you apply while pulling on a rope, which of the following is not affected?

(a) The stress on the rope

(b) The strain on the rope

(c) The Young’s modulus of the rope

(d) All of the above

(e) None of the above

How close to the edge of the 24.0 kg table shown in Fig. 9–54 can a 66.0 kg person sit without tipping it over?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free