Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate \({F_{\rm{A}}}\) and \({F_{\rm{B}}}\) for the beam shown in Fig. 9–56. The downward forces represent the weights of machinery on the beam. Assume that the beam is uniform and has a mass of 280 kg.

Short Answer

Expert verified

The value of \({F_{\rm{A}}}\) is 6272 N, and the value of \({F_{\rm{B}}}\) is 6072 N.

Step by step solution

01

Concepts

In equilibrium, the net force in the x and y directions should be zero, and the torque about any point is zero.For this problem, first, find the condition for equilibrium along the vertical axis and then the condition for zero torque about the left or right end.

02

Given data

The mass of the beam is \(m = 280\;{\rm{kg}}\).

The length of the beam is \(L = 10\;{\rm{m}}\).

The first force is \({F_1} = 4300\;{\rm{N}}\) at \({r_1} = 2.0\;{\rm{m}}\) from the left end.

The second force is \({F_2} = 3100\;{\rm{N}}\) at \({r_2} = 6.0\;{\rm{m}}\) from the left end.

The third force is \({F_3} = 2200\;{\rm{N}}\) at \({r_3} = 9.0\;{\rm{m}}\) from the left end.

You can assume that the total mass of the beam is at the middle of the beam, i.e., at \(\frac{L}{2} = 5.0\;{\rm{m}}\) from the left end.

03

Calculation

The free-body diagram is shown below.

In equilibrium, the net torque about the left end is zero. Then,

\(\begin{array}{l}\left( {{F_{\rm{B}}} \times 10\;{\rm{m}}} \right) - {F_1}{r_1} - {F_2}{r_2} - {F_3}{r_3} - \left( {mg \times \frac{L}{2}} \right) = 0\\{F_{\rm{B}}} \times 10\;{\rm{m}} = {F_1}{r_1} + {F_2}{r_2} + {F_3}{r_3} + \left( {mg \times \frac{L}{2}} \right)\\{F_{\rm{B}}} \times 10\;{\rm{m}} = \left( {4300\;{\rm{N}} \times 2.0\;{\rm{m}}} \right) + \left( {3100\;{\rm{N}} \times 6.0\;{\rm{m}}} \right) + \left( {2200\;{\rm{N}} \times 9.0\;{\rm{m}}} \right) + \left[ {\left( {280\;{\rm{kg}}} \right) \times \left( {9.80\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right) \times 5.0\;{\rm{m}}} \right]\\{F_{\rm{B}}} = 6072\;{\rm{N}}\end{array}\)

Now, for the equilibrium of the forces in the vertical direction,

\(\begin{array}{c}{F_{\rm{A}}} + {F_{\rm{B}}} - {F_1} - {F_2} - {F_3} - mg = 0\\{F_{\rm{A}}} = {F_1} + {F_2} + {F_3} + mg - {F_{\rm{B}}}\\{F_{\rm{A}}} = 4300\;{\rm{N}} + 3100\;{\rm{N}} + 2200\;{\rm{N}} + \left[ {\left( {280\;{\rm{kg}}} \right) \times \left( {9.80\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)} \right] - 6072\;{\rm{N}}\\{F_{\rm{A}}} = 6272\;{\rm{N}}\end{array}\)

Hence, the value of \({F_{\rm{A}}}\) is 6272 N, and the value of \({F_{\rm{B}}}\) is 6072 N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter


Question:A 50-story building is being planned. It is to be 180.0 m high with a base 46.0 m by 76.0 m. Its total mass will be about\({\bf{1}}{\bf{.8 \times 1}}{{\bf{0}}^{\bf{7}}}\;{\bf{kg}}\)and its weight therefore about\({\bf{1}}{\bf{.8 \times 1}}{{\bf{0}}^{\bf{8}}}\;{\bf{N}}\). Suppose a 200-km/h wind exerts a force of\({\bf{950}}\;{\bf{N/}}{{\bf{m}}^{\bf{2}}}\)over the 76.0-m-wide face (Fig. 9–80). Calculate the torque about the potential pivot point, the rear edge of the building (where acts in Fig. 9–80), and determine whether the building will topple. Assume the total force of the wind acts at the midpoint of the building’s face, and that the building is not anchored in bedrock. [Hint:\({\vec F_{\rm{E}}}\)in Fig. 9–80 represents the force that the Earth would exert on the building in the case where the building would just begin to tip.]



(II) (a) What is the maximum tension possible in a 1.00 mm diameter nylon tennis racket string? (b) If you want tighter strings, what do you do to prevent breakage: use thinner or thicker strings? Why? What causes strings to break when they are hit by the ball?


A uniform meter stick with a mass of 180 g is supported horizontally by two vertical strings, one at the 0-cm mark and the other at the 90-cm mark (Fig. 9–82). What is the tension in the string (a) at 0 cm? (b) at 90 cm?


Parachutists whose chutes have failed to open have been known to survive if they land in deep snow. Assume that a 75-kg parachutist hits the ground with an area of impact of\(0.30\;{{\rm{m}}^2}\)at a velocity of\(55\;{\rm{m/s}}\)and that the ultimate strength of body tissue is\(5 \times {10^5}\;{\rm{N/}}{{\rm{m}}^2}\). Assume that the person is brought to rest in 1.0 m of snow. Show that the person may escape serious injury.


(II) Two cords support a chandelier in the manner shown in Fig. 9–4 except that the upper cord makes an angle of 45° with the ceiling. If the cords can sustain a force of 1660 N without breaking, what is the maximum chandelier weight that can be supported?



See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free