The speed of sound in air is\(v = 343\,{\rm{m/s}}\).
The frequency of the shorter pipe is,
\(\begin{array}{c}{f_s} = \frac{v}{{2{l_s}}}\\ = \frac{{343\,{\rm{m/s}}}}{{2\left( {2.40\,{\rm{m}}} \right)}}\\ \approx 71.5\;{\rm{Hz}}\end{array}\)
As the other pipe is larger the frequency is less. The frequency of the other pipe is,
\(\begin{array}{c}{f_l} = {f_s} + \Delta f\\ = 71.5\;{\rm{Hz}} - 6.0\;{\rm{Hz}}\\ = 65.5\;{\rm{Hz}}\end{array}\)
The length of the other pipe is,
\(\begin{array}{c}{f_l} = \frac{v}{{2{l_l}}}\\{l_l} = \frac{v}{{2{f_l}}}\end{array}\)
Substitute the values and get,
\(\begin{array}{c}{l_l} = \frac{{343\,{\rm{m/s}}}}{{2\left( {65.5\;{\rm{Hz}}} \right)}}\\ \approx 2.62\;{\rm{m}}\end{array}\)
Hence, the length of the other pipe is\(2.62\;{\rm{m}}\).