(a)
Consider the microscope is moved at a distance of x from its initial position. So, the new distances are shown in the below figure.

The path difference can be given as:
\({d_1} - {d_2} = \frac{\lambda }{2}\)
From the above figure, the equation for the distance changes with respect to xcan be given as:
\(\begin{aligned}{}\sqrt {{{\left( {\frac{d}{2} + x} \right)}^2} + {l^2}} - \sqrt {{{\left( {\frac{d}{2} - x} \right)}^2} + {l^2}} &= \frac{\lambda }{2}\\\sqrt {{{\left( {\frac{d}{2} + x} \right)}^2} + {l^2}} &= \frac{\lambda }{2} + \sqrt {{{\left( {\frac{d}{2} - x} \right)}^2} + {l^2}} \end{aligned}\)
On squaring on both sides, you get:
\(\begin{aligned}{}{\left( {\frac{d}{2} + x} \right)^2} + {l^2} &= \frac{{{\lambda ^2}}}{4} + \lambda \sqrt {{{\left( {\frac{d}{2} - x} \right)}^2} + {l^2}} + {\left( {\frac{d}{2} - x} \right)^2} + {l^2}\\2dx - \frac{{{\lambda ^2}}}{4} &= \lambda \sqrt {{{\left( {\frac{d}{2} - x} \right)}^2} + {l^2}} \\4{d^2}{x^2} - \left( {4dx} \right)\frac{{{\lambda ^2}}}{4} + \frac{{{\lambda ^4}}}{{16}} &= {\lambda ^2}\left( {{{\left( {\frac{d}{2} - x} \right)}^2} + {l^2}} \right)\\x &= \lambda \sqrt {\frac{{\left( {\frac{1}{4}{d^2} + {l^2} - \frac{{{\lambda ^2}}}{{16}}} \right)}}{{\left( {4{d^2} - {\lambda ^2}} \right)}}} \end{aligned}\) … (1)
As you know \(\lambda = \frac{v}{f}\), substitute the value in equation (1), you get:
\(x = \left( {\frac{v}{f}} \right)\sqrt {\frac{{\left( {\frac{1}{4}{d^2} + {l^2} - \frac{1}{{16}}{{\left( {\frac{v}{f}} \right)}^2}} \right)}}{{\left( {4{d^2} - {{\left( {\frac{v}{f}} \right)}^2}} \right)}}} \) … (2)
On substituting the given numerical values in equation (2), you get:
\(\begin{aligned}{c}x &= \left( {\frac{{343\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}}}{{474\;{\rm{Hz}}}}} \right)\sqrt {\frac{{\left( {\frac{1}{4} \times {{\left( {3\;{\rm{m}}} \right)}^2} + {{\left( {3.20\;{\rm{m}}} \right)}^2} - \frac{1}{{16}}{{\left( {\frac{{343\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}}}{{474\;{\rm{Hz}}}}} \right)}^2}} \right)}}{{\left( {4 \times {{\left( {3\;{\rm{m}}} \right)}^2} - {{\left( {\frac{{343\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}}}{{474\;{\rm{Hz}}}}} \right)}^2}} \right)}}} \\x &= \left( {0.72\;{\rm{m}}} \right) \times \left( {\sqrt {\frac{{12.45}}{{35.48}}} } \right)\\x &= 0.426\;{\rm{m}}\end{aligned}\)
Thus, the distance to which the microphone moves is \(0.426\;{\rm{m}}\).