The ratio of change in frequency to the original frequency is given as,
\(\begin{array}{c}\frac{{\Delta f}}{{{f_{22^\circ {\rm{C}}}}}} = \frac{{\frac{{{v_{{\rm{11^\circ C}}}} - {v_{{\rm{22^\circ C}}}}}}{\lambda }}}{{\frac{{{v_{{\rm{22^\circ C}}}}}}{\lambda }}}\\ = \frac{{{v_{{\rm{11^\circ C}}}}}}{{{v_{{\rm{22^\circ C}}}}}} - 1\end{array}\)…… (i)
The speed of sound at\(22{\rm{^\circ C}}\)can be written as,
\({v_{22{\rm{^\circ C}}}} = 331 + 0.6{T_{22{\rm{^\circ C}}}}\)
The speed of sound at\(11{\rm{^\circ C}}\)can be written as,
\({v_{{\rm{11^\circ C}}}} = 331 + 0.6{T_{{\rm{11^\circ C}}}}\)
Substitute the values in equation (i),
\(\frac{{\Delta f}}{{{f_{22^\circ {\rm{C}}}}}} = \frac{{331 + 0.6{T_{{\rm{11^\circ C}}}}}}{{331 + 0.6{T_{{\rm{22^\circ C}}}}}} - 1\)
The percentage difference is,
\(\begin{array}{c}\frac{{\Delta f}}{{{f_{22^\circ {\rm{C}}}}}} = \left( {\frac{{331 + 0.6\left( {11{\rm{^\circ C}}} \right)}}{{331 + 0.6\left( {{\rm{22^\circ C}}} \right)}} - 1} \right) \times 100\% \\ = - 0.01917 \times 100\% \\ = - 1.917\% \end{array}\)
Thus, the percentage frequency be off at \(11{\rm{^\circ C}}\) is \( - 1.917\% \).