The fundamental frequency of the string is calculated as,
\(\begin{array}{c}{f_1} = \frac{{{f_3}}}{n}\\ = \frac{{540{\rm{ Hz}}}}{3}\\ = 180{\rm{ Hz}}\end{array}\)
The fundamental frequency of the fingered string is calculated as,
\(\begin{array}{l}{f_{{1_{{\rm{fingered}}}}}} = \frac{\nu }{{2{l_{{\rm{fingered}}}}}}\\{f_{{1_{{\rm{fingered}}}}}} = \frac{\nu }{{2 \times \left( {0.70l} \right)}}\end{array}\)
Here, v is the speed of sound.
Substitute the values in the above relation.
\(\begin{array}{c}{f_{{1_{{\rm{fingered}}}}}} = \frac{\nu }{{2 \times \left( {0.70l} \right)}}\\ = \frac{1}{{0.70}}{f_1}\\ = \frac{{180{\rm{ Hz}}}}{{0.70}}\\{f_{{1_{{\rm{fingered}}}}}} = 257.14{\rm{ Hz}}\end{array}\)
Thus, the fundamental frequency of fingered string is \(257.14{\rm{ Hz}}\).