Let \({I_2}\) be the intensity of sound produced by each engine, then the total intensity of sound produced by all four jet engines is \({I_1} = 4{I_2}\).
The standard value for the threshold intensity is \({I_0} = 1 \times {10^{ - 12}}\;{\rm{W/}}{{\rm{m}}^2}\).
The intensity of sound due to four engines is calculated below:
\(\begin{aligned}{c}\beta = 10\log \left( {\frac{{{I_1}}}{{{I_0}}}} \right)\\\log \left( {\frac{{{I_1}}}{{{I_0}}}} \right) = \frac{\beta }{{10}}\end{aligned}\)
Substitute the values in the above equation.
\(\begin{aligned}{c}\log \left( {\frac{{{I_1}}}{{1 \times {{10}^{ - 12}}\;{\rm{W/}}{{\rm{m}}^2}}}} \right) = \frac{{140\;{\rm{dB}}}}{{10}}\\{I_1} = \left( {1 \times {{10}^{ - 12}}\;{\rm{W/}}{{\rm{m}}^2}} \right)\left( {{{10}^{14}}} \right)\\{I_1} = 100\;{\rm{W/}}{{\rm{m}}^2}\end{aligned}\)
The intensity of sound due to one engine is calculated below:
\({I_2} = \frac{{{I_1}}}{4}\)
Substitute the values in the above equation.
\(\begin{aligned}{c} = \frac{{100\;{\rm{W/}}{{\rm{m}}^2}}}{4}\\ = 25\;{\rm{W/}}{{\rm{m}}^2}\end{aligned}\)