The expression for the fractional change in the angular velocity of the Earth can be written as:
\(\begin{aligned}{c}f &= \left( {\frac{{{\omega _{\rm{f}}} - {\omega _{\rm{E}}}}}{{{\omega _{\rm{E}}}}}} \right) \times 100\% \\f &= \left( {\frac{{{I_{\rm{a}}}{\omega _{\rm{a}}}}}{{{I_{\rm{E}}}{\omega _{\rm{E}}}}}} \right) \times 100\% \\f &= \frac{{\left( {{m_{\rm{a}}}R_{\rm{E}}^2} \right)\left( {\frac{{{v_{\rm{a}}}}}{{{R_{\rm{E}}}}}} \right)}}{{\left( {\frac{2}{5}{M_{\rm{E}}}R_{\rm{E}}^2} \right)\left( {\frac{{2\pi }}{T}} \right)}} \times 100\% \\f &= \frac{{5{m_{\rm{a}}}{v_{\rm{a}}}T}}{{2{M_{\rm{E}}}2\pi {R_{\rm{E}}}}} \times 100\% \end{aligned}\)
Here, \({M_{\rm{E}}}\) is the mass of the Earth and its value is \(5.97 \times {10^{24}}\;{\rm{kg}}\), \({R_{\rm{E}}}\) is the radius of the Earth and its value is \(6.38 \times {10^6}\;{\rm{m}}\), and \(T\) is the time period of one rotation of the Earth and its value is \(1\;{\rm{day}}\).
Substitute the values in the above expression.
\(\begin{aligned}{c}f &= \frac{{5\left( {1.0 \times {{10}^5}\;{\rm{kg}}} \right)\left\{ {\left( {35\;{{{\rm{km}}} \mathord{\left/{\vphantom {{{\rm{km}}} {\rm{s}}}} \right.} {\rm{s}}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{\rm{3}}}\;{\rm{m}}}}{{{\rm{1}}\;{\rm{km}}}}} \right)} \right\}\left\{ {\left( {1\;{\rm{day}}} \right)\left( {\frac{{86400\;{\rm{s}}}}{{1\;{\rm{day}}}}} \right)} \right\}}}{{2\left( {5.97 \times {{10}^{24}}\;{\rm{kg}}} \right)2\pi \left( {6.38 \times {{10}^6}\;{\rm{m}}} \right)}} \times 100\% \\f &= 3.2 \times {10^{ - 16}}\% \end{aligned}\)
Thus, the percent change in the angular speed of the Earth as a result of the collision is \(3.2 \times {10^{ - 16}}\% \).