Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We claim that momentum and angular momentum are conserved. Yet most moving or rotating objects eventually slow down and stop. Explain.

Short Answer

Expert verified

Due to the presence of the frictional force, the net force on the object is not equal to zero. That’s why most moving or rotating objects slow down and stop.

Step by step solution

01

Meaning of frictional force 

Friction may be described as a kind of force that resists the movement of one object in contact with another. Kinetic and static are the two types of frictional forces.

02

Application of frictional force

When the net torque and net force acting on a particle are equivalent to zero, the angular momentum and linear momentum are said to be conserved.

However, in the case of revolving objects, due to the presence of a frictional force, the net torque or net force is not equal to zero. Hence, revolving objects eventually slow down and stop.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A car speedometer that is supposed to read the linear speed of the car uses a device that actually measures the angular speed of the tires. If larger-diameter tires are mounted on the car instead, how will that affect the speedometer reading? The speedometer

(a) will still read the speed accurately.

(b) will read low.

(c) will read high

When a motorcyclist leaves the ground on a jump and leaves the throttle on (so the rear wheel spins), why does the front of the cycle rise up?

A potter is shaping a bowl on a potter's wheel rotating at a constant angular velocity of 1.6 rev/s (Fig. 8–48). The frictional force between her hands and the clay is 1.5 N. (a) How large is her torque on the wheel if the diameter of the bowl is 9.0 cm? (b) How long would it take for the potter's wheel to stop if the only torque acting on it is due to the potter's hands? The moment of inertia of the wheel and the bowl is \(0.11\;{\rm{kg}} \cdot {{\rm{m}}^{\rm{2}}}\).

FIGURE 8-48

Problem 40

A centrifuge rotor rotating at 9200 rpm is shut off and eventually brought uniformly to rest by a frictional torque of \({\bf{1}}{\bf{.20}}\;{\bf{m}} \cdot {\bf{N}}\). If the mass of the rotor is 3.10 kg, and it can be approximated as a solid cylinder of radius 0.0710 m, through how many revolutions will the rotor turn before coming to rest, and how long will it take?

The bolts on the cylinder head of an engine require tightening to a torque of 95 m N. If a wrench is 28 cm long, what force perpendicular to the wrench must the mechanic exert at its end? If the six-sided bolt head is 15 mm across (Fig. 8–44), estimate the force applied near each of the six points by a wrench.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free