Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two identical billiard balls traveling at the same speed have a head-on collision and rebound. If the balls had twice the mass, but maintained the same size and speed, how would the rebound be different? (a) At a higher speed.

(b) At slower speed.

(c) No difference.

Short Answer

Expert verified

(c) No difference in the rebound speed.

Step by step solution

01

Effect of mass on momentum and kinetic energy

Both kinetic energy and momentum are directly proportional to mass. So, their values will double if you double the mass.

02

Determine the effect on the final motion after doubling the mass

In this problem, the collision taking place is head-on. So, you can apply the conservation of momentum principle.

Based on this principle, if the mass is doubled, then both initial and final momentum will get doubled as they are equal.

This way, the conservation of the momentum equation will remain unchanged after doubling the mass.

From this equation, you can find that the final velocity is unchanged. So, there is no change in the rebound speed.

Thus, option (c) is the correct answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Astronomers estimate that a 2.0-km-diameter asteroid collides with the Earth once every million years. The collision could pose a threat to life on Earth. (a) Assume a spherical asteroid has a mass of 3200 kg for each cubic meter of volume and moves toward the Earth at\(15\;{\rm{km/s}}\). How much destructive energy could be released when it embeds itself in the Earth? (b) For comparison, a nuclear bomb could release about\(4.0 \times {10^{16}}\;{\rm{J}}\). How many such bombs would have to explode simultaneously to release the destructive energy of the asteroid collision with the Earth?

A 12-kg hammer strikes a nail at a velocity of 7.5 m/s and comes to rest in a time interval of 8.0 ms.

(a) What is the impulse given to the nail?

(b) What is the average force acting on the nail?

A 0.280-kg croquet ball makes an elastic head-on collision with a second ball initially at rest. The second ball moves off with half the original speed of the first ball.

(a) What is the mass of the second ball?

(b) What fraction of the original kinetic energy \(\left( {\frac{{{\rm{\Delta KE}}}}{{{\rm{KE}}}}} \right)\) gets transferred to the second ball?

A 0.145-kg baseball pitched horizontally at 27.0 m/s strikes a bat and pops straight up to a height of 31.5 m. If the contact time between bat and ball is 2.5 ms, calculate the average force between the ball and bat during contact.

Two astronauts, one of mass 55 kg and the other 85 kg, are initially at rest together in outer space. They then push each other apart. How far apart are they when the lighter astronaut has moved 12 m?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free