(b)
The man moves a distance of\(2.5\;{\rm{m}}\). Hence, his distance from the origin is
\(\begin{array}{c}{x_{\rm{m}}} = \left( {10.0\;{\rm{m}}} \right) - \left( {2.5\;{\rm{m}}} \right)\\{x_{\rm{m}}} = 7.5\;{\rm{m}}{\rm{.}}\end{array}\)
The net external force on the system is zero. Therefore, the center of mass does not change.
The position of the woman can be calculated as shown below:
\(\begin{array}{c}{x_{{\rm{CM}}}} = \frac{{{m_{\rm{w}}}{x_{\rm{w}}} + {m_{\rm{m}}}{x_{\rm{m}}}}}{{{m_{\rm{w}}} + {m_{\rm{m}}}}}\\{x_{\rm{w}}} = \frac{{{x_{{\rm{CM}}}}\left( {{m_{\rm{w}}} + {m_{\rm{m}}}} \right) - {m_{\rm{m}}}{x_{\rm{m}}}}}{{{m_{\rm{w}}}}}\\{x_{\rm{w}}} = \frac{{\left( {5.8\;{\rm{m}}} \right)\left[ {\left( {52\;{\rm{kg}}} \right) + \left( {72\;{\rm{kg}}} \right)} \right] - \left( {72\;{\rm{kg}}} \right)\left( {7.5\;{\rm{m}}} \right)}}{{\left( {52\;{\rm{kg}}} \right)}}\\{x_{\rm{w}}} = 3.46\;{\rm{m}}\end{array}\)
The distance between the man and the woman can be calculated as shown below:
\(\begin{array}{c}d = {x_{\rm{m}}} - {x_{\rm{w}}}\\d = \left( {7.5\;{\rm{m}}} \right) - \left( {3.46\;{\rm{m}}} \right)\\d = 4.038\;{\rm{m}} \approx {\rm{4}}{\rm{.0}}\;{\rm{m}}\end{array}\)
Thus, the distance between the man and the woman is \({\rm{4}}{\rm{.0}}\;{\rm{m}}\).