The condition for perfectly elastic collision is as follows:
\(\begin{array}{c}e=\frac{{{v_{2,{\rm{f}}}}{v_{1,f}}}}{{{v_{1,i}}{v_{2,{\rm{i}}}}}}\\1=\frac{{{v_{2,{\rm{f}}}}-{v_{1,f}}}}{{{v_{1,i}}- {v_{2,{\rm{i}}}}}}\\{v_{2,{\rm{f}}}} - {v_{1,f}} = {v_{1,i}} - {v_{2,{\rm{i}}}}\end{array}\)
Substitute the values in the above equation.
\(\begin{array}{c}{v_{2,{\rm{f}}}} - {v_{1,f}} = \left( {3.80\;{{\rm{m}} \mathord{\left/ {\vphantom{{\rm{m}}{\rm{s}}}}\right.\\}{\rm{s}}}}\right)0\\{v_{2,{\rm{f}}}}=\left({3.80\;{{\rm{m}}\mathord{\left/{\vphantom{{\rm{m}}{\rm{s}}}}\right.\\}{\rm{s}}}}\right)+{v_{1,f}}\end{array}\) ……… (ii)
Substitute the value of equation (ii) in equation (i).
\(\begin{array}{c}\left({0.440\;{\rm{kg}}}\right){v_{1,{\rm{f}}}}+\left({0.220\;{\rm{kg}}} \right)\left[ {\left( {3.80\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right) + {v_{1,f}}} \right] = 1.672\;{{{\rm{kg}} \cdot {\rm{m}}} \mathord{\left/{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {\rm{s}}}} \right.\\} {\rm{s}}}\\\left( {0.440\;{\rm{kg}}} \right){v_{1,{\rm{f}}}} + \left( {0.220\;{\rm{kg}}} \right){v_{1,f}} = \left( {1.672\;{{{\rm{kg}} \cdot {\rm{m}}} \mathord{\left/{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right) - \left( {0.836\;{{{\rm{kg}} \cdot {\rm{m}}} \mathord{\left/{\vphantom {{{\rm{kg}} \cdot {\rm{m}}}{\rm{s}}}}\right.\\}{\rm{s}}}}\right)\\{v_{1,{\rm{f}}}}=1.27\;{{\rm{m}}\mathord{\left/{\vphantom{{\rm{m}}{\rm{s}}}}\right.\\}{\rm{s}}}\end{array}\)
Substitute this value in equation (ii) to get the final velocity of the second ball.
\(\begin{array}{c}{v_{2,{\rm{f}}}} = \left( {3.80\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\}{\rm{s}}}}\right) + {v_{1,f}}\\{v_{2,{\rm{f}}}} = \left( {3.80\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right) + \left( {1.27\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right)\\{v_{2,{\rm{f}}}} = 5.07\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\}{\rm{s}}}\end{array}\)
Thus, the final velocity of the first ball is \(1.27\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}\) towards the east, and that of the second ball is \(5.07\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}\), also towards the east.