Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Why do you tend to lean backward when carrying a heavy load in your arms?

Short Answer

Expert verified

When you lean backward with a load in your arms, the center of mass becomes stable, and you are able to move forward without much difficulty.

Step by step solution

01

Determine the condition for the stability of the human body

The center of mass of the human body depends on gender.The center of mass of a stable human body is above the feet and almost 10 cm below the navel.

02

Explanation for leaning backward with a heavy load in your arm

When you carry a heavy load in your arms and stand straight, the center of mass is out of your body (in front of your body). It is due to the combined weight of your body and the load you are carrying. It will be difficult for you to move forward with the heavy load in the straight standing position.

When you lean backward with the load in your arms, the center of mass makes a slight shift and attains the stable position. It helps you move forward easily.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 52-kg woman and a 72-kg man stand 10.0 m apart on nearly frictionless ice.

(a) How far from the woman is their CM?

(b) If each holds one end of a rope, and the man pulls on the rope so that he moves 2.5 m, how far from the woman will he be now?

(c) How far will the man have moved when he collides with the woman?

The masses of the Earth and Moon are \({\bf{5}}{\bf{.98 \times 1}}{{\bf{0}}^{{\bf{24}}}}\;{\bf{kg}}\) and \({\bf{7}}{\bf{.35 \times 1}}{{\bf{0}}^{{\bf{22}}}}\;{\bf{kg}}\), respectively, and their centers are separated by \({\bf{3}}{\bf{.84 \times 1}}{{\bf{0}}^{\bf{8}}}\;{\bf{m}}\).

(a) Where is the CM of the Earthโ€“Moon system located?

(b) What can you say about the motion of the Earthโ€“Moon system about the Sun, and of the Earth and Moon separately about the Sun?

A 0.145-kg baseball pitched horizontally at 27.0 m/s strikes a bat and pops straight up to a height of 31.5 m. If the contact time between bat and ball is 2.5 ms, calculate the average force between the ball and bat during contact.

Determine the fraction of kinetic energy lost by a neutron\(\left( {{m_1} = 1.01\;{\rm{u}}} \right)\)when it collides head-on and elastically with a target particle at rest which is

(a)\({}_1^1{\rm{H}}\)\(\left( {{m_1} = 1.01\;{\rm{u}}} \right)\)

(b)\({}_1^2{\rm{H}}\)(heavy hydrogen,\(m = 2.01\;{\rm{u}}\));

(c)\({}_6^{12}{\rm{C}}\)(\(m = 12\;{\rm{u}}\))

(d)\({}_{82}^{208}{\rm{Pb}}\)(lead,\(m = 208\;{\rm{u}}\)).

A bullet of mass \(m{\bf{ = 0}}{\bf{.0010}}\;{\bf{kg}}\) embeds itself in a wooden block with mass \(M{\bf{ = 0}}{\bf{.999}}\;{\bf{kg}}\), which then compresses a spring \(\left( {k{\bf{ = 140}}\;{\bf{N/m}}} \right)\) by a distance \(x{\bf{ = 0}}{\bf{.050}}\;{\bf{m}}\) before coming to rest. The coefficient of kinetic friction between the block and table is \(\mu {\bf{ = 0}}{\bf{.50}}\).

(a) What is the initial velocity (assumed horizontal) of the bullet?

(b) What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the bullet and the block?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free